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Abstract

     Concentration waves, the solutions of the Riemann problem, are calculated in the framework of

multicomponent chromatography. Unlike ion exchange surfaces, oxides bind cations by predomi-

nantly chemical forces, except perhaps in pristine water (at low ionic strengths I ≤ 10-4 mol/L and

trace metal concentrations), where electrostatic constraints give adsorption the appearance of a metal-

proton exchange process. In addition to the ionic strength threshold there is another threshold in

concentration space, a line along which the metal ions cover half of the surface sites (equivalence

line). On its low pH side analytical expressions for the waves in pristine water are good approxima-

tions for the I = 0.1 mol/L case, as constructed from eigenvectors and eigenvalues of the Jacobian of

the multicomponent isotherms. At pH above the equivalence threshold competition for adsorption

sites has a negligible effect on the waves in water at I = 0.1 mol/L.
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     In the past decade affordable computers have become capable of calcu-

lating geochemical transport of several interacting chemical components in

porous media. Examples of such components are natural ions, ligands,

nutrients and contaminants. Numerous transport codes have been written,

as is evident from reviews e.g. by Kirkner and Reeves (1, 2) or Kinzelbach et

al. (3). Numerical difficulties and long computation times have been ad-

dressed in various ways, depending on the choice of the geochemical problem

(4 - 9).

     The analytical solution of the transport equation for the system with one

adsorbing component, no soluble complex formation and no precipitation (10)

shows that, once a stable concentration profile has developed, its form does

not tell us whether it has been generated by hydrodynamic dispersion or by

kinetics of adsorption with a linear driving force. In fact, for a water velocity

of 1 m/yr or less - typical for sandy/loamy soils- the kinetics of adsorption

disappears behind hydrodynamic dispersion when the time constant for

adsorption is a week or less. This will also be assumed in this paper although

an analytical solution of the general multicomponent transport equations has

not been found.

     At thermodynamic equilibrium chemical interactions are described by

mass action laws, which are nonlinear in the soluble concentrations of the

components. Because of this nonlinearity the system behavior is characteri-

zed by a multitude of thresholds. The presence of a component is largely

irrelevant when its concentration stays below a threshold. When its con-

centration increases and crosses the threshold, it may gain more influence

than any of the other components has.
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     These thresholds in concentration space are well known in batch systems

where they delimit regions of predominance of a species (11). Concentration

space is the space the coordinate axes of which are the concentrations of

the chemical components. The locations of thresholds in concentration space

are similarly necessary to help us understand transport profiles in columns.

     The following is true both for nonlinear batch and transport systems:

(1) The behavior of a system, as expressed by its speciation or its

concentration profile, changes qualitatively across a threshold. We

need to know the thresholds before we can draw conclusions based on

a limited number of samples of the system behavior. Such conclusions

are inter-, extrapolation and generalization of computed or experimen-

tally determined results.

(2) Form and location of the thresholds in concentration space are

functions of the chemical interaction parameters, e.g. complex for-

mation constants, selectivity coefficients or solublility products. The

thresholds cannot be located applying a numerical solution technique to

the complete multicomponent chemical system, sampling the behavior

at more or less arbitrarily chosen locations in concentration space.

Instead, analytical solutions have to be found for simplified versions of

the system with which to make informed guesses of the governing

processes and thus of the expected location of the thresholds.
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     One such simplification of the 1-dimensional multicomponent transport

problem is omitting diffusion and hydrodynamic dispersion, thus reducing the

transport equations to a nonlinear set of hyperbolic partial differential

equations in one space coordinate and time as used in multicomponent

chromatography (13, 14). The concentration profile is then usually more

easily computed than with numerical models, largely because general

properties of the solution of the hyperbolic problem can be derived from

mathematics and do not need to be found by the computer (12, 15 - 17).

     In chromatography any concentration profile can be built from interacting

centered waves originating from the concentration inhomogeneities within

the column (12, 13, 18). The centered wave is the solution of the transport

equations for the so-called "Riemann Problem", i.e. a single abrupt change of

the chemical composition of the water (feed) at the inlet of a column with a

homogeneous concentration distribution.

     Whereas ion exchange resins interact with ions via electrostatic forces,

the adsorbing surfaces considered in this paper -ferric oxides- bind ions by

predominantly chemical forces. Thus the surface generally acquires electric

charge as more and more ions adsorb. Mainly because of the absence of data

and appropriate chemical models, this paper will limit itself to systems where

two components, a metal ion and the proton, compete for adsorption sites.

We will derive the concentration profile of the centered wave from the

chemical interactions.

     In some areas of concentration space the structure of the solution is

indicative of accumulation of one component after remobilization due to
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competition of the other (displacement development). The thresholds leading

into those areas will be located

Governing Hyperbolic Equations

     Migration of two chemical components, a metal M and the proton H, in ho-

mogeneous porous media or a flow channel of a non homogeneous medium is

described by two mass conservation laws. In the absence of hydrodynamic

dispersion, precipitation and dissolution of solids and when the pore water is

in thermodynamic equilibrium with the adsorbing surfaces, the conservation

laws are hyperbolic equations that are nonlinear due to the adsorption

isotherms M(M, H) and H(M, H):

∂
∂t

 { φ M(x,t) + M(M, H)}   +  q 
∂
∂x

 M(x,t) = 0
(1)

∂
∂t

 { φ Ht(x,t) + H(M, H)}   +  q 
∂
∂x

 Ht(x,t) = 0
(2)

     Here x and t are the space and time coordinates, φ and q are the volu-

metric water content of the porous medium and the flux of the water,

respectively. M(x, t), M(M, H) and Ht(x, t), H(M, H) are the soluble and

adsorbed metal and proton concentrations, respectively. It is assumed that

the only soluble species of the metal is the free metal ion, M2+, and that

there are several soluble proton species, the concentration of which add up

to Ht(x, t). H(x, t) is the concentration of the free proton, H+.
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     Solutions M(x, t) and Ht(x, t) of the hyperbolic system, Equations (1) and

(2), for variable feeds {M(x, t=0), Ht(x, t=0)} remain continuous functions of

x and t, or develop into steps. The former solutions are called rarefaction or

diffuse waves and the latter shocks or self-sharpening waves (12 - 14).

When the steps have developed, the conservation laws become a set of

difference equations:

∆
∆t

 { φ M(x, t) + M(M, H)}  + q ∆
∆x

 M(x, t) = 0
, (3)

∆
∆t

 { φ Ht(x, t) + H(M, H)}  + q ∆
∆x

 Ht(x, t) = 0
, (4)

which in chromatography are called integral coherence conditions as opposed

to the differential coherence conditions, Equations (1) and (2) (13).

     Temple (19) and Helfferich and Klein (13) have shown that in some cir-

cumstances shocks and rarefaction waves coincide when represented in

concentration space.  This will mainly be the case in this paper.

Riemann Problem and Centered Waves

     The solution of the Riemann Problem is the solution of Equations (1) and

(2) or Equations (3) and (4) for a single abrupt change (from {M-, H-} to {M+,

H+}) of the chemical composition vector of the feed. Let x = 0 be the initial

location of this concentration jump, and assume that the pore water flows in

positive x-direction:
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c(x, t=0) = {
M+
H+

  for x ≥ 0    (pre-equilibrant)

M-
 H-

  for x < 0                     (feed)
(5)

t

x

1-Rarefaction Wave

2-Shock or
2-Indifferent Wave

{M  , H  }--

{M  , H    }
m      m

{M  , H   }++

Figure 1: An initial discontinuity between two constant states, {M-, H-} and {M+, H+},

decomposes with time into a fan of two concentration changes called centered waves,

either shocks, indifferent waves or rarefaction waves, separated by the constant state

{Mm,Hm}. Here the 1-wave is plotted as rarefaction wave and the 2-wave as indifferent

wave or shock. The notation has been chosen according to conventions in mathematics.

     The solution of the Riemann problem Equation (5) is a sequence of

constant states separated by centered waves (20) (Figure 1). The constant

states are regions of fixed concentrations. The transitions between the

constant states are called waves, because each of them is the propagated

initial concentration jump, Equation (5). Thus, the term wave is used without

implying a periodic variation with time or space.

     The heavy lines in Figure 1 are the boundaries of the constant states.

The concentration varies from {M-, H-}  to {Mm, Hm}  across the 1-wave and
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from {Mm, Hm}  to {M+, H+}  across the 2-wave, either continuously as shown

for the 1-wave (a rarefaction wave), or abruptly as shown for the 2-wave

(an indifferent wave or a shock).

    Because all waves originate from the initial discontinuity at x = 0, Equation

(5),  for times t > 0 the vector of concentrations c = {M, Ht} in the fan does

not depend on x and t separately, but instead on the ratio ξ = x/t, the speed

of the concentration: a concentration c(x,t) = {M(x, t), Ht(x, t)} is constant

on the line x/t = ξ, the "characteristic" (light or heavy lines in Figure 1).

     The continuous variation of the concentration vector between the con-

centrations of the two adjacent constant states (heavy lines in Figure 1) is

illustrated by drawing a fan of light lines, each representing the path of a

concentration c in (x,t) space (Figure 1). Rarefaction waves expand with

time because each concentration propagates with its own speed -hence their

name. In an indifferent wave and a shock all concentrations have the same

speed. Across these waves the concentration jumps from the constant

state on one side to the constant state on the other. This jump is

represented by a single heavy line in Figure 1.

These three types of waves will be described in more detail later in this

paper.

     It is helpful to represent the situation depicted in Figure 1 in concentra-

tion space (called "composition space" by Helfferich and Klein (13) ), as

shown in Figure 2. Constant state {M-, H-} is connected by the 1-wave to the
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middle state {Mm, Hm}, which in turn is connected by the 2-wave to constant

state {M+, H+}.

     It will be shown in the section introducing the Jacobian of the isotherms

that the 1-rarefaction wave is the curve through the boundary condition {M-,

H-} on which point {Mm, Hm} moves when the initial condition {M+, H+} is varied.

Similarly, the 2-rarefaction wave is the curve through the initial condition

{M+, H+} on which point {Mm, Hm} moves when the boundary condition {M-, H-}

is varied.

 

H

M

1-Wave

-

+

m

2-Wave

Figure 2: Waves (shown arbitrarily as lines) and constant states (points (-), (m) and

(+)) in concentration space. Point (-) has the coordinates {M-, H-}, (+) has the co-

ordinates {M-, H-}, and (m) represents {Mm, Hm}.

     In Figure 2 the waves have been arbitrarily represented as lines. It is the

goal of this paper to show how their form depends on the chemical inter-

actions at the adsorbing oxide surface. The first step in that direction is a

simplification of the transport equations (1) and (2) based on the fan like

structure in Figure 1.
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With ξ = x/t and, consequently ,

∂
∂x

  =  
∂ξ
∂x

 d
dξ

  =  1
t
 d
dξ

 

∂
∂t

  =  
∂ξ
∂t

 d
dξ

   = - x
 t2

 d
dξ

  = - 
ξ
t
 d
dξ (6)

the transport equations (1) and (2) become a set of ordinary differential

equations:

(
q

φ
 - ξ) d

dξ
 M - 

ξ

φ
 d
dξ

 M = 0
, (7)

(
q

φ
 - ξ) d

dξ
 Ht - 

ξ

φ
 d
dξ

 H = 0
. (8)

where the derivative with respect to ξ expresses the change across the

waves, i.e. -in Figure 1- from one characteristic to the other or -in Figure 2-

along the lines representing the waves.

     In order to solve Equations (7) and (8), we will express the dependent

variables Ht, M and H as functions of the concentrations M and H of the free

ions M2+ and H+. Whereas the function Ht(H) is well known and can be given

without comment in the next paragraph, the adsorbed concentrations M and

H follow from mass action laws describing the adsorption process as

complex formation between the adsorbent and surface functional groups.

They will be explained in the next section.
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     It is customary in speciation calculations to approximate Ht(H) in pristine

water by the difference between the proton and the hydroxyl concentra-

tions, assuming that the concentration of the H2O complex remains constant

with variable pH (pH = -log H):

Ht = H - OH = H - Kw
H , (9)

where Kw = 10-14 (mol/L)2.

Surface Complexation on Hydrous Ferric Oxides

     Using their Generalized Two-Layer Model of surface complexation,

Dzombak and Morel  (21) re-fitted two-component adsorption experiments

performed with 12 metal cations and 8 metal oxianions with hydrous ferric

oxides, Fe2O3 (am), as adsorbent. In the experiments, the metal competes

only with the proton for surface sites, no third adsorbing component being

present.

     The Generalized Two-Layer Model is a simplified version of the Triple

Layer Model (22, 23). Adsorption is represented as the formation of

chemical complexes with high and low affinity sites, XsO and XwO,

respectively, where Xs and Xw represent the oxide lattice and O is the oxygen

layer at the interface between lattice and aqueous solution. The surface

sites XαO carry one negative electronic charge, regardless of their affinity.

All surface complexes are located directly on the oxide surface. The
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chemical force can bind ions on the surface even if the surface builds up a

repulsive electric charge.

     The other layer is a diffuse layer of charges, containing all ions present in

the aqueous solution. Ions are pulled into this layer by purely electrostatic

forces, until their charges neutralize the surface charge accumulated via

surface complexation. The concentration of ions of charge z (positive or

negative) in the diffuse layer follows a Boltzmann distribution P(x), where x

is the distance from the charged surface

 
P(x) = exp(- 

zFψ(x)

RT
)
. (10)

where ψ(x) is the electrostatic potential at distance x from the surface, F is

the Faraday constant, R is the molar gas constant, T is the absolute tem-

perature.

     The site XαO can chemically bind (see Figure 3)

(1) either two protons, forming the complex XαOH2 which carries one

positive charge, or

(2) one proton, forming the electrically neutral complex XαOH, or

(3) the doubly positively charged metal ion, forming the complex XαOM

which carries one positive charge.

O O
M

O
H

X
s

Xs X
w

O

X
w

O
H H

X
w

O
H

X
s

O
H H

X
w
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Figure 3: Schematic of surface of oxide lattice (Xs, Xw) with interfacial oxygen layer

(O) and some surface comlexes (XsOM, XsOH, XwOH, XwOH2).

     Thus, the total concentration XT
α of surface sites of type α is the sum of

the concentrations of these three surface complexes and XαO:

XT
α = XαOH2 + XαOH + XαO + XαOM,      (α = s, w), (11)

     Henceforth, when the symbol X is used without superscript α, the sum of

the corresponding expressions is implied, i.e.

XOH2 = XsOH2 + XwOH2,

XOH = XsOH + XwOH,

XO = XsO + XwO,

XOM = XsOM + XwOM,

XT = XT
s + XT

w
. (12)

     The surface complex concentrations XαL in Equations (11) or (12) are the

following functions of the free metal ion and proton concentrations, M and H:

XαOH2(M, H) = XT
α k1P0 H2

δα (13)

XαOH(M, H) = XT
α H

δα (14)

XαO(M, H) = XT
α k2/P0

δα (15)
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XαOM(M, H) = XT
α αα P0 M

δα (16)

where

δα = αα P0 M + H (1 + k1P0 H) + k2
P0. (17)

The proof -given in Appendix I- uses the following two relationships:

(1) the site balance equations (11),

(2) the mass action laws for surface complex formation with the

concentrations of the proton and metal ion corrected for electrostatic

effects by inclusion of Equation (10), the Boltzmann distribution evalu-

ated at the surface, P(x=0) = P0.

     The Boltzmann distribution factor P0 can be expressed as a function of

both the concentration c of the electrolyte, i.e. of the ions in solution, and

the concentrations of the surface complexes responsible for surface charge

P0(XOH2, XO, XOM, c) = exp (- 
Fψ0(XOH2, XO, XOM, c)

RT
)

(18)

    With Equation (18) Equations (13) - (17) become a set of implicit equa-

tions in M and H of the type XαOL(M, H) = f(M, H, XβOK), where XβOK stands

for all surface species. The program DSURF (21), the implementation of the

Generalized Two Layer Model, solves these implicit equations numerically for
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the surface complex concentrations (13) - (17) as functions of M and H or

Ht.

Analytical Solutions Below the Ionic Strength Threshold

     The transport equations (7) and (8) are usually solved with a numerical

finite difference scheme incorporating the two numerical functions

M(M, H) = XOM (19)

H(M, H) = XOH + 2 XOH2. (20)

     The chromatographic model presented here avoids introducing numerical

functions at this point. Instead,  the Boltzmann correction factor P0 is ap-

proximated with an analytical function P. At trace concentrations of the

metal, P is a function only of pH and the ionic strength I (21),

I = 1
2

zi
2 ci∑

al l  ions i
in solution . (21)

At small ionic strengths I ≤ 10-4 mol/L and M << XT (pristine water

approximation), the correction factor can well be approximated by

P = 

k2
k1

H
 = PZC

H
   for I ≤ 10-4 mol/L, M << XT (pristine water approximation)

 (22)

as can be seen in Figure 4. At I = 10-1 mol/L  the approximation
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P  = (PZC
H

)2/3     for I = 10-1 mol/L, M << XT 
(23)

is good for 4 ≤ pH ≤ 11.

pH

lo
g 

P

I = 0.1 M

I ≤ 0.0001 M

pPZC

Figure 4: Boltzmann distributions at oxide surface P0  (heavy lines, Equation (18)) and

their analytic approximations P(pH) (light lines, Equations (22) and (23)) as func-

tions of pH at ionic strengths I = 10-4 mol/L and I = 10-1mol/L (from (21)). At pH =

-log PZC both P and P0  are 1.

     A property of the pristine water approximation Equation (22) is that the

ratios between the surface complex concentrations are constant

XαOH2

  XαO
  = 1, X

αOH2

  XαOH
  = k1k2        for I ≤ 10-4M, XOM << XT

(24)

The balance between positive and negative surface charges, XαΟH2 and XαΟ,

at XOM << XT is equivalent to σ = F(XαΟH2 - XαΟ + 2 XOM) ≈ 0. This is a

property of the electric condensor formed by the surface on one side and
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the electrolyte in the diffuse layer on the other and is expressed in Equation

(I.11): The reaction enthalpy of surface complex formation is larger or equal

to the work necessary to move ions against the repulsive electric potential,

i.e. chemistry can only build up a certain surface potential ψ0. At fixed ψ0 in

Equation (I.11), σ tends to zero when c approaches zero, i.e. the surface can

only hold very little net charge σ.

     With  Equation (22) we find an analytical solution of the set of transport

equations (7) and (8) (proof can be found in Appendix II):

M = M- - (H - H-) - Kw ( 1
H

  - 1
H-

)     (1-wave, retarded)
, (25)

H = H+ M
M+

          (2-wave, non-retarded)
. (26)

{M-, H-} is a fixed point, e.g. point (-) in Figure 5, lying anywhere on the solid

line M(M-, H-, H), the 1-wave Equation (25). Similarly, {M+, H+} is a fixed point,

like (+) in Figure 5, lying anywhere on the dashed line H(M+, H+, M), the 2-

wave Equation (26).

     Thus, in the pristine water approximation, the waves do not depend on

any of the adsorption parameters and are therefore element independent.

The shape and the slope of the 2-waves are given alone by the requirement

of electroneutrality, Equation (24), and the charge of the metal ion. The

latter determines the exponent of P0 in Equation (16) and leads ultimately to

the square root in Equation (26). The shape of the 1-waves is given by

electroneutrality, Equation (24), and the presence of the soluble OH complex,

Equation (9).
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At high pH the 1-waves approach the asymptotic line

M(M-, H-, H) = Kw
H

     for H → 0, M-+Ht-<<M+Ht (27)

     Figure 5 shows the grid of 1- and 2-waves. Helfferich has called this

mesh of waves the "street map of the system".

     It is stated here without proof that at this low ionic strength, i.e. when

Equation (22) is valid, shocks (solutions of Equations (3) and (4)) and rar-

efaction waves (solutions of Equations (1) and (2)) coincide. Thus, the lines

in Figure 5 are both shocks and rarefaction waves.

     The retardations ρ1(M, H) and ρ2(M, H) of the 1- and 2-rarefaction waves

ρk(M, H) = 
q/φ

ξk (28)
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pH

log M

- m

+

Figure 5: 1- and 2-waves, Equations (25) and (26), in concentration space,

calculated with the pristine water approximation Equation (22). 2-waves are dashed.

The waves are both rarefaction waves and shocks. Units of M: mol/L. The heavy line is

simultaneously a 2-wave and the equivalence line Equation (37). The points (-), (m)

and (+) mark the solution of a particular Riemann problem.

can be calculated by solving Equation (7) for q/(ξφ) and using the equations

for the waves, Equations (25) and (26), to evaluate the expressions (for

details of the derivation see Appendix III). The result is

ρ1(M, H) = 1 +  1
φ

  
∂XOM(M, H)

∂M
  (1 +  2HM

H2 + Kw

)
, (29)

ρ2(M, H) = 1
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where

∂XOM(M, H)
∂M

 = XT 
α PZC (1 + 2 k1PZC) H2

(α PZC M + H2 (1 +  2 k1PZC))2
. (30)

     Within the 1-rarefaction wave each concentration {M, H} propagates with

its own speed ξ1 = q/(φρ1(M, H)). The fan of characteristics expands with

time (see Figure 1). All concentrations in the 2-wave propagate with the

same unretarded speed ξ2 = q/φ (see Equations (28) and (29)). It is an indif-

ferent wave.

Figure 6: 1-waves, Equation (25), superimposed on corresponding retardation surface

ρ1(Pb, H), Equations (29) and (30), for Pb/H system at ionic strength I ≤ 10-4

mol/L. Units of Pb: mol/L. The heavy line is simultaneously the equivalence line,

Equation (37), and a 2-wave, Equation (26). The points (-), (m) and (+) mark the

solution of a particular Riemann problem. (Here are the corresponding 1-waves in V.
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Prigiobbe's paper (27):

http://acamedia.info/sciences/J_G/sichtF/prigiobbe13_slow_wave.jpg):

    Figure 6 shows the 1-rarefaction waves of Figure 5 superimposed on the

surface ρ1(M, H). Whereas the waves are element independent, the

retardations are not. The retardation surface was calculated for the Pb/H

system with hydrous ferric oxide as adsorbent (αs = 10 4.65, αw = 0, PZC =

10-8.1 mol/L, k1= 10 7.3 L/mol, after (21)).

Waves Above the Ionic Strength Threshold: The Jacobian of the

Isotherms

    At higher ionic strengths, e.g. I = 0.1 M, the solution method for the set

of transport equations (7) and (8) is based on the Jacobi matrix of the ad-

sorption isotherms M(M, H) and H(M, H), Equations (19) and (20), as is

described in detail in Appendix IV. With c = {M, Ht}, the retardations ρ1(c) and

ρ2(c) of the rarefaction waves are the eigenvalues of the retardation matrix

R(c) = I + 1
φ

 Kd(c) 
1 0

0 ∂H

∂Ht (31)

where the matrices I and Kd(c), the unit matrix and Jacobian of the

isotherms, respectively, are

I = 1 0
0 1 ,
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Kd(c) = 

∂
∂M

 XOM(c) ∂
∂H

 XOM(c)

∂
∂M

 (2XOH2(c) + XOH(c)) ∂
∂H

 (2XOH2(c) + XOH(c))
.. (32)

     The matrix {{1, 0}, {0, ∂H/∂Ht}} is a consequence of the isotherms being

functions of M and H whereas the dependent variables in the transport

equations are M and Ht.

     At any point c = {M, Ht} the retardation matrix has two retardation

eigenvalues ρ1(c) and ρ2(c). The system is non-degenerate, i.e.

ρ1(c) > ρ2(c) ≥ 1. (33)

     It is shown in Appendix IV that the 1- and 2-rarefaction waves are the

curves that are everywhere tangential to the eigenvectors r1(c) and r2(c)

of the Jacobian Kd(c), respectively. They can be constructed from the

corresponding eigenvector field rk(c) by a suitable integration method, such

as the Euler or a Runge-Kutta method (see Appendix IV). The latter is

incorporated in the high level computer language AVS (Application

Visualization System (24)). After having received the vector field rk(c) from

the user, AVS constructs the k-wave on the computer screen, when the

user presses the corresponding button.

      Convention Equation (33) is built upon an important property of the

system, its genuine non-linearity.
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Genuine Non-Linearity and The Equivalence Line

     The system is genuinely nonlinear in those regions of concentration space

where the retardation varies across the waves. Let ρk(c) be the retardation

of the k-wave, then at every point c in concentrations space such a system

has obviously the property

(grad ρk, rk) = (
∂ρk

∂ M
∂ρk

∂ Ht
, rk) ≠ 0

(34)

     The retardation has a local maximum when half the number of sites are

occupied by metal ions, i.e. when in the isotherms (19), (20) with Equations

(13) - (17) the term ααP0M equals one half the size of the denominator δα.

αα P0 M = H (1 + k1P0 H) + k2
P0. (35)

Solving for M gives the equation of what we will call "equivalence line for site

type α":

Meq
α  = 

k2
P0

 + H (1 + k1P0 H)

ααP0
 
. (36)

Replacing P0 with the pristine water approximation (22) gives the heavy lines

in Figures 5 and 6

Meq
α  = 1

αα PZC
 H2 (1 + 2k1PZC)

(37)
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Waves at Elevated Ionic Strength: The Equivalence Threshold

     The Pb/H system is used here to demonstrate how the grid of waves is

deformed relative to the element independent pattern in Figures 5 and 6,

when a higher ionic strength allows the oxide surface to pick up electronic

charge in the adsorption process. The adsorption parameters used for the

calculation of the Jacobi or retardation matrix are (21):

Adsorption and desorption of a proton:

k1 = 10 7.3 L/mol

k2 = 10 -8.9 mol/L (38)

Adsorption of lead:

αs = 10 4.65

αw = 0 (only high affinity sites bind Pb) (39)

     Figure 7 displays the 1- and 2-rarefaction waves. Comparing this with

Figure 5, we see that below the equivalence line Equation (36), the heavy line

in Figure 7, the waves are similar to the ones in Figure 5. This indicates an

exchange behavior similar to the one in Figure 5: lead and proton compete

for adsorption sites similarly as in the low ionic strength approximation. This

is the reason why here shocks and rarefaction waves nearly coincide, which

they precisely do in Figure 5.

     Above the equivalence line, the system in Figure 7 has decoupled: The 1-

wave is the proton wave, the 2-wave is the lead wave. In the decoupled

system shocks and rarefaction waves run parallel to the axes, which means
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that Equations (7) and (8) decouple: In a wave, whether shock or rarefaction

wave, only one component varies..

     So, shocks and rarefaction waves coincide everywhere in concentration

space, except in the transition region near the equivalence line.

pH

- m

+

log Pb

Figure 7: 1- and 2-waves for the system Pb/H at ionic strength I = 0.1 mol/L. 2-waves

are dashed. Units of Pb: mol/L. The heavy line is simultaneously a 2-wave and the equi-

valence line Equation (36). The points (-), (m) and (+) mark the solution of a parti-

cular Riemann problem. The adsorption constants are based on experiments performed

in a system with I = 0.1 mol/L at the positions marked by dots.

     The decoupling at high pH is interpreted as follows: The Pb ions occupy all

high affinity sites as they win in competition with the protons, which bind
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much more weakly to these sites. Thus, only the low affinity sites are left to

the protons. To those sites Pb ions have no access (αw = 0). Thus, protons

and Pb ions do not compete or exchange with each other when they adsorb in

the region above the equivalence line, except for the electrostatic

interactions which are weak because of the non vanishing ionic strength.

     Adsorption experiments from which Dzombak and Morel (21) extracted

the adsorption data (38) and (39) have been performed at I = 0.1 mol/L and

at the positions marked by the dots in Figure 7. Because of the nonlinearity

of the adsorption model Equations (13) - (17), adsorption data are valid only

within the thresholds in concentration space where they were determined i.e.

in the region where protons exchange with Pb ions upon adsorption. The

validity of the chosen adsorption data was neither checked in the region

where the system decouples nor for the pristine water system (I ≤ 10-4

mol/L, M << XT).

     Figure 8 shows the waves superimposed on the retardation ρi(M, H). By

definition, a wave is a rarefaction wave, when its front part propagates

faster than its rear end, resulting in a profile c(x, t) that spreads with time.

When the rear end of a wave is faster than its front it runs into the front

and a shock forms. Therefore, Figure 8 helps us decide when a wave is a

rarefaction wave: we have a rarefaction wave only when the front end of the

wave is downhill from its rear end. Thus, the 1-wave in the Riemann problem

in Figure 7 is a rarefaction wave, and the 2-wave is a shock.
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Figure 8: 1-waves (upper picture) and 2-waves (lower picture), Equations (IV.17) -

(IV.19),  for system Pb/H at ionic strength I = 0.1 M, superimposed on the corre-

sponding retardation surface ρ1(Pb, H) and ρ2(Pb, H), respectively, defined in

Equations (31) - (32). Units of Pb: mol/L. The heavy line is simultaneously the

equivalence line Equation (36) and a 2-wave. The points (-), (m) and (+) mark the

solution of a particular Riemann problem.
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     The shocks are calculated from Equations (3) and (4) as demonstrated in

detail in Appendix V. Figure 9 shows some 2-shocks of the Pb/H system at

ionic strengths I = 0.1 mol/L. As pointed out above, they deviate from the 2-

rarefaction waves (Figure 7) near the equivalence line, but this deviation

does not change the geometrical structure of the remobilization scenario

represented by the Riemann problem in Figures 5 - 8. Therefore, in the

following section the metal accumulation during a remobilization scenario will

be discussed for the pristine water approximation of the waves.

pH

log Pb

Figure 9: 2-shocks, solutions of Equations (3) and (4), for the system Pb/H at ionic

strength I = 0.1 mol/L. Units of Pb: mol/L. Point (m) of the shock is marked by a dot.

The heavy line is simultaneously the equivalence line Equation (36) and a 2-shock.

Metal Accumulation Between Waves
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     The distance xk(c), a concentration c = {M, H} in the k-wave has traveled

at time t, is by definition of the retardation ρk in Equation (28)

xk(c) = ξk(c) t = 
q t

φ ρk(c), (40)

where ξk(c) is the speed of the concentration c in the k-wave. The pristine

water approximation of the concentration profile x1 of the 1-wave results

when in c = {M, H} the variable M is replaced with the function M given in

Equation (25)

x1({ M(M-,H-,H),H} ) =  
q t

φ ρ1({ M(M-,H-,H),H} )
     for H = H- ... Hm

(41)

and Equation (29) with Equation (30) are used to define the retardation ρ1. In

the 2-wave all concentrations have the same retardation ρ2(c) = 1 (see

Equation (29)). It is an indifferent wave. Thus, within the 2-wave H(M+, H+,

M), Equation (26), the concentration vector jumps at x = x2 from {Mm, Hm} to

{M+, H+}. The concentration profile is

x2({ M, H(M+,H+,M)} ) =  
q t

φ 
     for M = Mm ... M+

(42)

     Figure 10 shows the 1- and 2-waves in the pristine water approximation,

Equation (22), for three Riemann problems representing remobilization of an

initially poorly soluble lead inventory, {M+, H+} = {10-8.8, 10-6 ... 10-8} mol/L.



30

2-
In

di
ffe

re
nt

 W
av

e

M
, H

 (
m

ol
/L

)

1-Rarefaction Wave

x (m)

M

H

1

2

3

2

3

1

-

+
1

2

3

+

+

log M

pH

1
m

2
m

3
m

Figure 10: Waves (1-rarefaction wave, Equation (25), and 2-indifferent wave,

Equation (26), right) and concentration profiles (left), Equations (41) and (42), for

three Riemann problems calculated for I ≤ 10-4 M, φ = 0.4, q t = 1 m. Adsorption data

(21) given in Equations (38) and (39). Feed water composition is the same for all

three Riemann problems, i.e. point (-) in plot of waves on the right. In plot of profile,

constant state (m) is clearly visible only in Riemann problem 2, whereas in problem 3

it has vanishing width (from x = 2.47 m to 2.5 m), and in problem 1 it extends over

almost the entire length of the profile (from x = 0.1 m to 2.5 m), its metal and proton

concentrations nearly coinciding with the frame of the plot.

     In addition to Equations (38) and (39) the following data have been used in

the calculations:

φ = 0.4, q t = 1 m (43)

     The waves are plotted both in concentration space (right hand side of

Figure 10) and in physical space (on the left). The water flows in positive x-
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direction. In Riemann problem 1 the 1-rarefaction wave extends over a very

small portion of the profile,

x1({ M(M-,H-,Hm),Hm} ) =  0.11 m (44)

in problem 3 it covers almost the entire profile:

x1({ M(M-,H-,Hm),Hm} ) =  2.47 m. (45)

Only in problem 2 the intermediate constant state {Mm, Hm} is clearly visible

x1({ M(M-,H-,Hm),Hm} ) =  2.03 m (46)

The 2-wave is a nonretarded indifferent wave, and its concentration profile

is

x2({ M, H(M+,H+,M)} ) =  2.5 m     for M = Mm ... M+. (47)

     The constant state {Mm, Hm} extends between the boundaries of the 1-

and 2-waves, i.e. from x1({M(M-, M-, Hm), Hm}) to x2({M, H(M+, H+, M), H}).

     The proton and lead concentrations in the 1-wave are symmetrical about

the line at M = 0.5 (M- + H-), because in Equation (25) with H >> √Kw, we

have -typical of an exchange process in a two-component system

M = (M- + H-) - H, (48)
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     The reason why the lead ions accumulate, is this: Behind the 1-wave, the

protons have displaced metal ions from the adsorbing surface, because H- >

H+. The remobilized metal ion inventory is compressed between the front of

intruding water, x(M-, H-), and the 2-wave, because in front of the 2-wave we

have -by definition of the 2-wave- the original state of the column

characterized by c+ = {M+, H+}.

     The relocated metal concentration increases when the widths of the 1-

wave and the constant state {Mm, Hm} decrease. The width of the latter

constant state decreases when the speeds ξ1({Mm, Hm}) and ξ2({Mm, Hm}) =

q/φ of its two bordering characteristics approach each other, or in other

words ρ1({Mm, Hm}) approaches 1. In Figure 6 one can see that this is the

case when point (m) moves to the right. Therefore accumulation of the

metal ion increases from Riemann problem 1 to 3.

Conclusions and Outlook

     Concentration profiles of lead and protons have been derived from the

chemical interactions. Lead ions and protons bind chemically to the oxide

surfaces which present a high and a low affinity adsorption site type. Lead

binds probably only to the minority sites, i.e. the high affinity type. Because

protons adsorb on both site types, particularly on the majority sites, in a

wide region of concentration space there is little competition between lead

and protons for adsorption sites, except

(a) when electrical forces counteracting the chemical surface bond

confine the variation of the electric surface charge to a narrow range,
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thus forcing upon the system a behavior known from ion exchange

systems (ionic strength threshold).

(b) -in the absence of (a)- near a threshold and on the low pH side of it,

i.e. a line in concentration space where half the high affinity sites are

filled with lead ions (equivalence line threshold).

     The calculations in this paper have shown that the waves in a system with

competition have the same geometrical shape as in ion exchange systems.

Thus, in all cases of competition the accumulation of lead after its

remobilization from the oxides surface is similar to a process known as

displacement development with which ion exchange resins are regenerated

(13).

The adsorption data (21)  were derived from experiments performed at I =

0.1 mol/L and below or near the equivalence threshold Equation (36).  With

Helfferich's street map it has been shown that the applicability of the data

has to be checked in those cases where the waves are separated by

thresholds (a) or (b) from the experimentally probed region.

     The behavior of hyperbolic systems,  such as the one presented here, has

been intensively studied for many decades. We often know which systems

have easy and transparent solutions. The waves and retardations derived

from the conserved quantities, i.e. the total soluble and the adsorbed

concentration, or calculated from the Jacobian matrix of the isotherms are

such simple solutions. Such chromatographic solution methods provide an

efficient and simple means of orientation in a new transport system, similar
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to the well known methods that have been used to interpret the speciation in

batch systems (25).

     The calculations can be done e.g. in high-level languages such as

Mathematica (26) on a Macintosh or a Personal Computer and AVS

(Application Visualization System (24)) on a workstation and take typically

several minutes computing time. They can thus be integrated in the work of

a chemical laboratory and help locate batch experiments in concentration

space that aim at the determination of adsorption constants.
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Nomenclature

First parentheses give units. (-) means dimensionless.

Last parentheses give number of equation or Figure where symbol first appears or is defined.

c electrolyte concentration (mol per Liter of liquid), (18),

c vector of soluble concentration {M, Ht} or {M, H}, (mol per Liter of liquid), (31),

F Faraday constant (96485 Coulomb per mol), (10),

H+ H(x ≥ 0, t = 0), (5),

H- H(x < 0, t = 0), (5),
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Ht- Ht(x < 0, t = 0), (27), see also (9),

Hm concentration of free proton between 1- and 2-wave, (mol per Liter of liquid),

(Figure 1),

Ht(x, t) total soluble concentration of protons, (mol per Liter of liquid), (2),

H(ξ) concentration of free proton, (mol per Liter of liquid), (8),

H(x, t) concentration of free proton at location x and time t, (mol per Liter of liquid), (9),

H(M, H) adsorbed proton concentration (proton isotherm), (mol per Liter of system vol-

ume), (2),

I ionic strength, (mol per Liter of liquid), (21),

I identity matrix, (32),

k index specifying wave, k = 1: 1-wave (slow), k = 2: 2-wave (fast), (Figure1,

(25), (26)),

k1 equilibrium formation constant of XOH2  surface complex from XOH and H, (107.3

Liter per mol), (13), (38)

k2 equilibrium formation constant of XO surface complex from XOH and H, (10-8.9 mol

per Liter), (15), (38)

Kw water dissociation constant, (10-14 (mol per Liter of liquid)2), (9),

Kd(c) Jacobi matrix of isotherms evaluated at location c in composition space, (-), (32),

M+ M(x ≥ 0, t = 0), (mol per Liter of liquid), (5),

M- M(x < 0, t = 0), (mol per Liter of liquid), (5),

M(M, H) adsorbed metal concentration (metal isotherm), (mol per Liter of system volume),

(1),

M(x, t) soluble metal concentration, (mol per Liter of liquid), (1),

M(ξ) soluble concentration of metal, (mol per Liter of liquid), (7),

Mm concentration of metal between the 1- and 2-wave, (mol per Liter of liquid),

(Figure 1),
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Mα
eq(H) soluble equivalent metal concentration (at which half the adsorption sites of type α

are filled with metal ions) as a function of H, (mol per Liter of liquid), (36),

P(x) Boltzmann distribution as a function of distance from oxide surface, (-), (10),

P(H) analytical approximation of Boltzmann distribution at oxide surface as a function

proton concentration, (-), (22), (23)

P0(XO.., c)Boltzmann distribution at oxide surface as a function of non neutral surface complex

concentrations and electrolyte concentration, (-), (18),

PZC point of zero charge on hydrous ferric oxide in pristine water, i.e. at I ≤ 10-4 mol/L

PZC =  √(k2/k1 = 10-8.1 mol/L), (22), page 21,

q flux of water in column of porous medium, (meter per year), (1),

R molar gas constant, (8.314 Joule per(mol Kelvin)), (10),

R(c) retardation matrix evaluated at location c in concentration space, (-), (31),

rk(c) right eigenvector of R(c) corresponding to eigenvalue ρk(c), ((mol year) per

(Liter meter)), (IV.13),

t time variable, (year), (1),

T absolute temperature, (Kelvin), (10),

Xα
T concentration of adsorption sites of type α, (mol per Liter of system volume), (11),

XT concentration of adsorption sites of any type, (mol per Liter of system volume),

(12),

XαO concentration of empty sites of type α, (mol per Liter of system), (11),

XαOL concentration of sites of type α covered with L = H, H2 , M, (mol per Liter of sys-

tem), (11),

XOL concentration of any site type covered with L = H, H2 , M, (mol per Liter of system),

(12),

x space variable (meter), (1),

z charge of ion, (multiple of unit electronic charge), (10).
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α site type, (α = s, w), (11),

αα metal-proton exchange constant for site type α, (-), αs = 104.65, αw = 0, (39)

δα denominator in adsorption isotherms (17), (mol per Liter of liquid),

∆c concentration jump across shock, (mol per Liter of liquid), (3)

∆t time interval, (year), (3),

∆x distance traveled by shock during period ∆t, (meter), (3),

φ porosity of medium, (-), (1),

ρ(c) eigenvalue of R(c), also called "retardation", (-), (IV.3),

ρk(c) retardation of k-rarefaction wave, (-), (33),

σκ retardation of k-shock, (-), (V.2),

ξ speed of concentration c, (meter per year), (6),

ξk speed of concentration in a k-wave, (meter per year), (28),

ψ(x) electrostatic potential at distance x from oxide surface, (Volt), (10).
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Appendices

Appendix I: Charge Dependent Surface Complex Concentrations

The mass action laws for the formation of the surface complexes are

XαOH2 = k1 XαOH H0 (I.1)

XαO = k2  XαOH 1
H0 (I.2)

XαOM = αα XαOH M0
H0, (I.3)

where k1, k2, the ad- and desorption constants for a proton, are independent

from site type (21).  αα is the adsorption constant of the metal on site type

mailto:info@wri.com
mailto:valentina.prigiobbe@austin.utexas.edu
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α. H0 = H(x=0) and M0 = M(x=0) are the free concentrations of protons and

metal ions at distance x = 0 from the surface.

     According to statistical mechanics, protons and the doubly positively

charged  metal ion in thermal equilibrium in an electric field originating from

a surface with charge σ (C/m2) are distributed in such a way that their

densities at distance x from the surface are given by

H(x) = H exp(- 
Fψ(x)

RT
) = H P(x)

, (I.4)

M(x) = M exp(- 
2Fψ(x)

RT
) = M P2(x)

, (I.5)

where ψ(x) (Volt = Joule/Coulomb) is the potential at distance x from the

surface, F (96485 Coulomb/mol) is the Faraday-constant, R (8.314 J/(mol

K)) is the molar gas constant, T (K) is the absolute temperature. The expo-

nential term, called Boltzmann distribution, is abbreviated as P(x). With

Equations (I.4) and (I.5) and abbreviating P(x=0) as P0, the three mass action

laws involving four surface species (XαOH2, XαOH, XαO, XαOM) are

XαOH2 = k1 XαOH H P0, (I.6)

XαO = k2  XαOH 1
H P0, (I.7)

XαOM = αα XαOH M P0
H . (I.8)

Together with the site balance equation (11)

 XT
α = XαOH2 + XαOH + XαO + XαOM,      (α = s, w) (11)
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we have four equations for four species, which can be combined to yield

Equations (13) - (17):

XαOH2(M, H) = XT
α k1P0 H2

δα (13)

XαOH(M, H) = XT
α H

δα (14)

XαO(M, H) = XT
α k2/P0

δα (15)

XαOM(M, H) = XT
α αα P0 M

δα (16)

where

δα = αα P0 M + H (1 + k1P0 H) + k2
P0. (17)

     We can express P0 as a function of the other unknowns and the ion con-

centration in solution, c:

P0(XOH2, XO, XOM, c) = exp (- 
Fψ0(XOH2, XO, XOM, c)

RT
)
. (I.9)

 Proof: (1) We use our knowledge on the surface charge on each site type α

σ = σs + σw = XOH2 - XO + XOM, (I.10)

(2) The Gouy-Chapman theory gives the charge of an infinite plane immersed in an electrolyte

composed of ions with charge + ze and - ze (e is the unit electronic charge) as a function of the

potential:
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σ = 8 103RTεε0 c sinh 
zFψ0

2 RT, (I.11)

where c is the concentration of positive (or negative) ions, ε0 the permittivity of free space

(8.854 10-12 C/(Vm)) and ε the dielectric constant of water (78.5). Using Equation (I.10)

we calculate the potential at the surface ψ0 = ψ(x=0) by inverting the charge-potential rela-

tionship Equation (I.11):

ψ0 = 2 RT
zF

 Arcsinh σs + σw

8 103RTεε0c . (I.12)

(3) We use Equation (I.12) in the definition of the Boltzmann factor, which gives us (I.9).

q.e.d.

      Equations (13) - (17) is a set of 8 equations: 4 equations for α = s and

another 4 for α = w. With Equation (I.9) it contains 10 unknowns, i.e. the 8

surface species concentrations and the 2 components concentrations, M and

H. From this set the metal and proton isotherms

M(M, H) = XOM, (I.13)

H(M, H) = XOH + 2 XOH2 (I.14)

can be calculated as functions of M and H. Because the surface species

concentrations are given by a set of implicit equations of the type

XαOLj  (M, H) = f(M, H, Xs,wOLm (M, H)) (I.15)

where Xs,wOLm represents XαOH2, XαOH, XαO, XαOM with α = s, w, the

isotherms can usually be given only as numerical functions of M and H.
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Appendix II:  Proof of Analytical Solution of the Transport

Equations

     The adsorbed proton concentration H is

H = 2 XOH2(M, H) + XOH(M, H) (II.1)

and the adsorbed metal concentration is

M = XOM(M, H), (II.2)

thus

M + H = XOM + 2 XOH2 + XOH, (II.3)

and with XOH2 = XO due to Equation (22)

M + H = XOM + XOH2 + XOH + XO = XT. (II.4)

We add Equations (7) and (8)

(
q

φ
 - ξ) d

dξ
 (M + Ht) - 

ξ

φ
 d
dξ

 (M+ H) = 0
(II.5)
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and use the fact that the sum of the adsorbed metal and proton con-

centrations, Equation (II.4), is constant. The resulting differential equation is

(
q

φ
 - ξ) d

dξ
 (M + Ht) = 0

. (II.6)

There are two solutions of Equation (II.6):

d
dξ

 (M + Ht) = 0
(II.7)

and

ξ = 
q

φ
 
. (II.8)

     The solution Equation (II.8) is called non-retarded wave, the speed ξ of the

wave being equal to the speed of the water q/φ. After using Equation (II.8) in

Equation (I.3) we learn that the adsorbed metal concentration does not

change across this non-retarded wave: d/dξ (XOM) = 0 or

XOM(M, H) = XOM(M+, H+). (II.9)

The adsorption isotherm (16) then fixes the relationship between M and H.

Using the pristine water approximation Equation (22) for P in the isotherm,

we get

 

XOM(M, H) = XT 
α k2

k1
 M
H2

α k2
k1

 M
H2

 + (1 + 2 k1k2)
. (II.10)
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This isotherm meets Equation (II.9) when

H = H+ M
M+

          (2-wave, non-retarded)
. (II.11)

     Whereas the non-retarded wave is determined by element independent

properties Equation (24) of the oxide surface at low ionic strengths, the

equation for the other wave -given by Equation (II.7)- involves only soluble

species. Equation (II.7) states that the sum of the soluble concentrations is

a conserved quantity, i.e. it does not change across the wave, M + Ht = M- +

Ht-, and using this together with the definition of Ht, Equation (9), we find

M = M- - (H - H-) - Kw ( 1
H

  - 1
H-

)     (1-wave, retarded)
. (II.12)

Appendix III: Retardation of the 1-Rarefaction Wave at Low Ionic

Strength

     The retardation of the 2-rarefaction wave follows from Equation (II.8) of

Appendix II:

ρ2 = 
q/φ

ξ2

 = 1
. (III.1)

The retardation of the 1-rarefaction wave can be calculated as follows:

Eliminating q/(φξ) in Equation (7) gives
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q

φ ξ1

 = 1 + 1
φ

 

dXOM(M, H)

dξ
dM
dξ , (III.2)

where M = XOM = XsOM + XwOM was used. The derivatives with respect to ξ

are directional derivatives along the 1-wave. When the function M(H) given in

Equation (25) is used to replace M in Equation (III.2), the directional

derivative can be written as:

d
dξ

 = d
dH

, (III.3)

and thus Equation (III.2) can be developed into the expression

    

q

φ ξ1

 = 1 + 1
φ

 

dXOM(M, H)
dH
dM
dH

 = 1 + 1
φ

 

∂XOM(M, H)
∂M

 
dM(H)

dH
 + 

∂XOM(M, H)
∂H

 dH
dH

dM(H)
dH (III.4)

which can be rewritten as

q

φ ξ1

 = 1 + 1
φ

 
∂XOM(M, H)

∂M
  (1 + 

∂XOM(M, H)
∂H

∂XOM(M, H)
∂M

  1
dM(H)

dH

 )

. (III.5)

      Using the isotherms (16) with the P appropriate for low ionic strengths,

i.e. Equation (22), the quotient of partial derivatives in Equation (III.5) be-

comes
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∂XOM(M, H)
∂H

∂XOM(M, H)
∂M

 = - 2 M
H

. (III.6)

From Equation (25) we have

dM(H)
dH

 = - (1 + Kw

H2
)
. (III.7)

Using Equations (III.6) and (III.7) in Equation (III.5), we find for the retardation

ρ1 = 
q

φ ξ1

 = 1 + 1
φ

 
∂XOM(M, H)

∂M
 (1 + 

2 M
H 

1 + Kw

H2

 )

(III.8)

Evaluation of ∂XOM/∂M with the isotherm (16) and the appropriate P from

Equation (22) gives Equation (29) with Equation (30).

Appendix IV: The Jacobian of the Isotherms, the Retardation

Matrix and its Eigenvectors

     Because the adsorbed concentrations M(M, H) and H(M, H) depend only on

the free concentrations M and H, the derivatives with respect to ξ can be

written in the following way

d
dξ

 = 
∂

∂M
 dM
dξ

 + 
∂

∂H
 dH
dHt

 dHt

dξ . (IV.1)
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Using Equation (IV.1) in Equations (7) and (8), dividing the resulting equations

by ξ and re-writing them in matrix form leads to the eigenvalue problem

R(c) d
dξ

 M
Ht

 = ρ(c) d
dξ

 M
Ht , (IV.2)

where c = {M, H} is a point in concentration space.

     The eigenvalue ρ(c) is one of the values the quotient q/(φ ξ) can assume

at point c = {M, H} in concentration space

ρ(c) = 
q

φ ξ . (IV.3)

The matrix R(c), called retardation matrix, is

R(c) = I + 1
φ

 Kd(c) 
1 0

0 ∂H

∂Ht , (IV.4)

and the matrices I and Kd(c), the unit matrix and Jacobian of the isotherms,

respectively, are

I = 1 0
0 1 ,
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Kd(c) = 

∂
∂M

 XOM(c) ∂
∂H

 XOM(c)

∂
∂M

 (2XOH2(c) + XOH(c)) ∂
∂H

 (2XOH2(c) + XOH(c))
. (IV.5)

     At any point c = {M, Ht} the retardation matrix, Equation (IV.4), has two

eigenvalues ρ1(c) and ρ2(c). The system is non-degenerate, i.e.

ρ1(c) > ρ2(c) ≥ 1. (IV.6)

      For low ionic strengths, i.e. I ≤ 10-4 M, we can use approximation (22) for

P. Then

Kd(c) = 

∂
∂M

 XOM(c) ∂
∂H

 XOM(c)

∂
∂M

 (2XOH2(c) + XOH(c)) ∂
∂H

 (2XOH2(c) + XOH(c))
 = 

∂XOM(c)
∂M

 
1 - 2M

H

-1 2M
H

(IV.7)

with

∂XOM(c)
∂M

 = XT 
α PZC (1 + 2 k1PZC) H2

(α PZC M + H2 (1 +  2 k1PZC))2
(IV.8)

The eigenvalues of Kd are then

{ kd1, kd2}  = 
∂XOM[c]

∂M
 { H + 2M

H
, 0}

. (IV.9)

Because

dH
dHt

 = 1

1 + Kw

H2 (IV.10)

the eigenvalues are
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ρ1(c) = 1 +  1
φ

  
∂XOM(c)

∂M
  (1 +  2HM

H2 + Kw

)
, (IV.11)

ρ2(c) = 1, (IV.12)

which is consistent with Equations (29) and (30).

     To each eigenvalue ρi of the retardation matrix belongs a right eigen-

vector (see Equation (IV.2))

rk = κ d
dξ

 M
Ht . (IV.13)

This means that two infinitesimally separated positions c and c + dc  on the

k-wave are connected by a vector pointing in the direction of the (right)

eigenvector rk

d
dξ

 c = d
dξ

 M
Ht

 = κ r(c)
. (IV.14)

      We take κ = 1 and choose the direction of the k-eigenvector such that

the retardation ρk(c) of the k-wave decreases in the direction of the k-

eigenvector

(grad ρk, rk) < 0. (IV.15)

      Let c(k, n) be the k-wave in concentration space, with n being an index

denoting successive points on the wave. We can construct a k-wave c(k, n)

by integrating Equation (IV.14), i.e. compose the wave out of piecewise
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straight segments. The fastest integration procedure would be the Euler

method

c(k, n) = c(k, n-1) + δ rk(c(k, n-1)), (IV.16)

where δ is the length of the segments pointing in the direction of the

eigenvector rk(c(k, n-1)) at the beginning of the segment (c(k, n-1)).

     Runge-Kutta methods are more accurate, because they use an averaged

direction step (c(k, n-1)) instead of the direction rk(c(k, n-1)):

c(k, n) = c(k, n-1) + δ step(c(k, n-1)), (IV.17)

where in this paper we used the following averaging method

k-Wave

Euler

c(k, 1) c(k, 2)

c(k, 3)

r (c(k, 1))

r (c(k, 2))

H

M
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Runge-Kutta

H

M

c (k, 1)

c

2c

3c

1c

r (c  )k 2

r (c  )k 1

r (c  )3k

r (c)k

k-Wave

c (k, 2)

Figure IV.1: Euler and Runge-Kutta integration method for transport equations (IV.14).

The k-wave is composed of line segments of length δ pointing in the direction of the

eigenvector evaluated at the start of the segment.

step(c) = 1
6

 rk(c) + 2 rk(c1) + rk(c2) + 2 rk(c3)
(IV.18)

c1 = c + δ
2

 rk(c), c2 = c + δ
2

 rk(c1), c3 = c + δ rk(c2)
. (IV.19)

Figure IV.1 depicts the Euler and Runge-Kutta methods Equations (IV.16) -

(IV.19).

Appendix V: Computation of the 2-Shock

Solving Equations (3) and (4) for the shock-retardation σ
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σ = 1 + 
q/φ

∆x/∆t, (V.1)

gives the so-called Rankine Hugoniot relation:

σ = 1 + 1
φ

 ∆ M
∆ M

 = 1 + 1
φ

 ∆ H
∆ Ht , (V.2)

where ∆ denotes the concentration jump across the shock. For the 2-shock

(see Figures 1 and 2, subscript m is omitted for brevity),

∆M = M - M+,

∆Ht = Ht - Ht+,

∆M = M(M, H) - M(M+, H+),

∆H = H(M, H) - H(M+, H+). (V.3)

      The first of the two equations (V.2) is similar to Equation (III.2), derived

for rarefaction waves, as can be seen replacing M with XOM. Replacing also H

with XOH + 2 XOH2 changes Equation (V.2) into

∆ XOM(M, H)

∆ M
 = 

∆ (XOH(M, H) + 2 XOH2(M, H))

∆ Ht (V.4)

which is called integral coherence condition in chromatography [Helfferich

and Klein, 1970].

Equation (V.4) with Equation (V.3) can be solved for M as a function of H.

The Lax entropy condition [Lax, 1957]
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σ2 < ρ1(Mm, Hm) (V.5)

selects from the solutions the one, M(M+, H+, H), that has physical meaning in

that it is faster than the 1-rarefaction wave behind it. It is the 2-shock.

-------------------------
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