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a b s t r a c t

Simulation-based weather and climate prediction now involves the use of methods that reflect a deep

concern with uncertainty. These methods, known as ensemble prediction methods, produce multiple

simulations for predictive periods of interest, using different initial conditions, parameter values and/or

model structures. This paper provides a non-technical overview of current ensemble methods and

considers how the results of studies employing these methods should be interpreted, paying special

attention to probabilistic interpretations. A key conclusion is that, while complicated inductive

arguments might be given for the trustworthiness of probabilistic weather forecasts obtained from

ensemble studies, analogous arguments are out of reach in the case of long-term climate prediction. In

light of this, the paper considers how predictive uncertainty should be conveyed to decision makers.
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1. Introduction

Computer simulation models are ubiquitous in the study of

weather and climate. Their value as aids to understanding is

widely acknowledged, but for prediction they are considered truly

indispensable. Over the last half-century, substantial resources

have been devoted to the development of these weather and

climate models and to the expansion of observing networks that

help to provide initial conditions for them, often with the explicit

goal of more accurate prediction. Some of the fruit of this

investment can be seen in the considerable increase in the skill

of weather forecasts that has occurred in recent decades

(e.g. Simmons & Hollingsworth, 2002).

It is important to recognize, however, that simulation-based

weather and climate prediction today differs from that undertaken 50

years ago inways that extend far beyond havingmore comprehensive

observing systems and higher-resolution models that represent more

physical processes in greater detail. Most notably, weather and

climate prediction today involves the use of methods that reflect a

deep concern with uncertainty. These methods, known as ensemble

prediction methods, produce multiple simulations for predictive

periods of interest, using different initial conditions, parameter values

and/or model structures.

Ensemble methods are judged to be among the best ways forward

when it comes to predicting weather and climate in the face of

uncertainty. Yet interpreting results from studies employing ensem-

ble methods is a complex matter and, in the context of climate

prediction, is currently the subject of much discussion and debate

(e.g. Collins, 2007; Stainforth, Allen, Tredger, & Smith, 2007).

Particularly contentious is whether the results of ensemble prediction

studies should be transformed into probabilistic forecasts that are

offered as such to decision makers—as they choose policies for

reducing greenhouse gas emissions, decide how high to build sea

walls to protect coastal cities from strong storms, etc.

The discussion that follows has two main goals. First, it aims to

provide a non-technical introduction to today’s ensemble prediction

methods in a way that gives a sense of the richness and complexity

of current practice. As we will see, weather and climate prediction

involves much more than simply ‘‘running a model’’. Second, the

discussion will consider how results produced using the latest

ensemble methods should be interpreted. A key conclusion will be

that, while complicated inductive arguments might be given for the

trustworthiness of probabilistic weather forecasts obtained from

ensemble studies, analogous arguments are out of reach in the case

of long-term climate prediction. In light of this, options for

conveying predictive uncertainty to decision makers are presented.

2. Representational uncertainty in global weather and climate

prediction

A computer simulation model is a computer-implemented set

of instructions for repeatedly solving a set of equations in order to
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produce a representation of the temporal evolution (if any) of

selected properties of a target system. For simulation models used

to forecast the weather, the target system is Earth’s atmosphere,

and the equations of interest are ones that specify the instanta-

neous rate of change of temperature, pressure, winds and

humidity at any given location in the atmosphere. To arrive at

these differential equations, the atmosphere is treated as a

moving fluid in which various physical processes, such as the

absorption and emission of radiation and the formation of clouds

and precipitation, are also adding (or removing) energy and

moisture locally. Since these equations cannot be solved analy-

tically—they include, among other things, a version of the Navier–

Stokes equations—solutions are estimated using numerical

methods, including finite differencing techniques, with the help

of a computer. Solutions might be produced in �10 min time

steps, for each of many points on a global spatial grid, with grid

points spaced the equivalent of �50–100 km in the horizontal on

each of �30 vertical levels (UCAR, 2009a).2 In this way, a series of

predictive snapshots of the global atmosphere is produced,

typically extending about two weeks into the future.

For global climate models, the target system is Earth’s climate

system, understood to include the atmosphere, oceans, sea ice and

land surface. When predicting future climate, the aim is not to

simulate conditions in the climate system on any particular day,

but to simulate conditions over a longer period—typically years or

more—in such a way that the statistics of the simulated

conditions (i.e. the simulated climate) will match the statistics

of conditions that would occur during that period (i.e. the actual

climate) under some specified emission scenario.3 The atmo-

sphere component of a global climate model is typically very

similar to a weather forecasting model. Representations of the

ocean, sea ice and land surface vary more from model to model,

with some models including more simplified representations than

others (e.g. a ‘‘slab’’ ocean as opposed to a fully dynamic ocean).

Once again, some of the modeling equations are analytically

intractable, and the computer is used to estimate solutions. Since

climate simulations often cover decades or centuries of system

evolution, the resolution of global climate models must be coarser

than weather forecasting models if they are to finish running in

time to be useful; solutions might be produced in �30 min time

steps in the atmosphere component of a complex climate model,

with grid points spaced the equivalent of �200 km in the

horizontal on each of �20–40 vertical levels.

Identifying appropriate initial conditions from which to run

today’s weather and climate models is not an easy task. A value

must be assigned to each of the model’s variables for the start

time of the simulation period, ti. For weather forecasting models,

this will typically include values for temperature, pressure, wind

speed and humidity for each of the model’s many grid points.

Climate models will often require, in addition, values for

temperature, velocity, salinity and other variables for each of

many ocean grid points, as well as values for all variables included

in the sea ice and land surface components. Depending on the

resolution of the models, i.e. on the mesh of the spatial grid on

which solutions to model equations will be estimated, this can

amount to 106 or 107 variables for which initial values are

needed!

Observations of actual conditions in the atmosphere or ocean

around time ti are the natural starting point when choosing initial

conditions. However, observations are subject to various errors,

and they are made at locations that are irregularly and/or widely

spaced. An activity known as data assimilation aims to remedy

this. In general terms, data assimilation is a process by which

information from multiple sources is combined in an attempt to

estimate the state of a system for a time of interest (see Talagrand,

1997). For the atmosphere and ocean, the assimilation procedure

often uses a model-produced forecast for time ti as a first guess

regarding actual conditions at ti and then updates those

forecasted values in light of observations made during a period

of time extending on either side of ti, known as the assimilation

window.4 Updating may factor in that both observations and

model forecasts are subject to error. In this way, it is possible to

produce a best-guess estimate of the state of the atmosphere (or

oceans) for time ti that includes values for all model variables at

all atmosphere (or ocean) grid points.

In the case of weather forecasting, a best-guess estimate of the

state of the atmosphere produced via data assimilation is referred

to as an analysis and provides initial conditions with which to

generate a forecast. For simulations of future climate, initializa-

tion methods are more varied. For some global climate models,

the ocean component will be initialized with values obtained via

data assimilation, while the atmosphere component is initialized

with values obtained from a short atmosphere-only simulation;

for other models, initial conditions for both components will be

obtained from much longer simulations produced with the ocean

and atmosphere components individually (Randall et al., 2007,

p. 607). Initial conditions for all variables in the sea ice and land

surface components of course also need to be specified using

available information.

However initial conditions are chosen, there will be uncer-

tainty associated with the choice; the state of the atmosphere or

climate system might have been represented just as plausibly in a

slightly different way. This looseness stems from the fact that

both available observations and today’s models are imperfect in

ways that are neither readily apparent nor readily correctible.

Uncertainty regarding the choice of initial conditions became a

source of concern in the context of weather forecasting several

decades ago, when Ed Lorenz famously discovered that even small

differences in the conditions used to initialize weather models

can lead to quite large differences in the forecasts produced

(see Lorenz, 1963, 1965). Indeed, it was the recognition of this

sensitive dependence on initial conditions that first prompted

atmospheric scientists to consider ensemble approaches

(Leith, 1974; Lorenz, 1965). The extent to which initial condition

uncertainty is problematic in the context of climate prediction,

where statistical features of simulations are of interest, remains

unclear, but the existence of initial condition uncertainty is

readily acknowledged.

There is also uncertainty associated with the choice of

modeling equations, for several reasons. First, while the aim is

to build weather and climate models from well-established

physical theories, not all relevant physical processes are well

understood from a theoretical point of view. Second, even

processes that are well understood may need to be represented

in a simplified or idealized way, because their theoretical

equations are analytically unsolvable for the cases of interest or

because estimating solutions numerically would be too compli-

cated or too computationally demanding. Several simplified or

idealized representations of a process may be developed, without

it being obvious that one representation is better (for the
2 This is for models using finite differencing methods of solution, rather than

spectral methods. Note also that the resolution specified here is for global models;

regional models typically have higher resolution.
3 An emission scenario is an account of how greenhouse gas emissions and

other human-related activities that can influence climate might evolve in the

future.

4 The assimilation window might be very short, extending just a few minutes

on either side of ti, or somewhat longer, extending hours or more, depending on

the purpose for which the estimated state is to be used.
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purposes at hand) than the others. Third, some important

processes—such as the formation of individual clouds and the

transfer of momentum by turbulence—occur on scales smaller

than those resolved by global weather and climate models and

thus cannot be simulated explicitly; they must be represented

(somehow) in terms of larger-scale conditions. This activity is

known as parameterization. In general, there is no obviously best

way to parameterize a given sub-grid process.5

For all of these reasons, there is often considerable uncertainty

about which modeling equations would be best, or even adequate, for

predicting particular features of weather and climate with desired

accuracy. Even with the substantial store of knowledge that scientists

have accumulated regarding the atmosphere and climate system—-

knowledge that does lead to confident representations of some

processes—at numerous points in the model-building process there is

no obviously best way to do things. When speaking of this

uncertainty about how to adequately represent the processes that

shape the evolution of weather and climate, scientists today usually

make a further distinction, between structural and parametric

uncertainty. Structural uncertainty often refers to uncertainty about

the form that modeling equations should take (e.g. should this

quantity be represented as a function of just variable x, or of both

variable x and variable y), while parametric uncertainty is uncertainty

about the values that should be assigned to parameters within a set of

modeling equations (e.g. in this equation, should this parameter be

set to 0.2 or 0.3 m/s?).

Thus, there are three major types of representational uncer-

tainty recognized in the context of global weather and climate

simulation today: Initial condition uncertainty, structural uncer-

tainty and parametric uncertainty.6

3. Building ensembles for weather and climate prediction

Ensemble methods take a brute-force approach to exploring

the implications of the representational uncertainty just

discussed. The basic idea is simple enough: Rather than run just

one predictive simulation, run multiple simulations, sampling

different initial conditions, parameter values or modeling equa-

tions that are plausibly adequate for the predictive task at hand. A

collection of predictions will be produced, rather than just one,

reflecting the representational uncertainty sampled by the

alternative initial conditions, parameter values or modeling

equations that are used.

This characterization of ensemble methods calls to mind

Monte Carlo estimation, whereby probability distributions that

reflect uncertainty regarding initial condition or parameter values

are randomly sampled many times, and a simulation is produced

with each set of values selected via the sampling, in order to

estimate (in the form of another probability distribution)

uncertainty in one or more output variables. And indeed, it seems

fair to say that ensemble prediction of weather and climate is

inspired by Monte Carlo methods (see e.g. Leith, 1974).

But ensemble studies of weather and climate differ from the

paradigmatic Monte Carlo approach just described, for several

reasons. One is the high dimensionality of the representational

uncertainty at issue. Consider initial condition uncertainty: If

there are �106 variables for which values are needed, and some

uncertainty about which value should be assigned to each, then to

directly explore this uncertainty space a tremendous number of

samples (and corresponding simulations) would be called for,

vastly outstripping available computing power. Indeed, even one

simulation of 21st century conditions using a state-of-the-art

climate model can require significant time on a supercomputer,

rendering computationally infeasible the running of many

simulations. In addition, when it comes to structural uncertainty,

it is not clear how to sample adequately from a space of

mathematical functions in the way that one might from a space

of numerical values, as in a traditional Monte Carlo study. Indeed,

even characterizing a space of functions from which to sample can

be quite difficult (see Murphy et al., 2007; Parker, in press).

The remainder of this section gives a non-technical overview

of some of the ways in which scientists are producing ensembles

of predictive simulations in the face of these conditions

(high dimensionality, computational intensity and structural

uncertainty), leaving discussion of the interpretation of ensemble

results for Section 4.

3.1. Building ensembles for weather prediction

In December 1992, the National Centers for Environmental

Prediction (NCEP) in the United States and the European Center

for Medium-Range Weather Forecasting (ECMWF) in the United

Kingdom became the first forecasting centers to implement

ensemble methods as a regular part of daily weather prediction

(Kalnay, 2003).7 Since then, various other weather forecasting

centers around the world, including the Meteorological Service of

Canada (MSC), have also implemented ensemble methods.8 The

forecasting centers differ in the extent to which they focus on

initial condition uncertainty as opposed to parametric and

structural uncertainty and in how they investigate these different

kinds of uncertainty.9

At NCEP and ECMWF, the focus has been on initial condition

uncertainty. The forecast procedure begins with an analysis obtained

via data assimilation. The analysis provides one set of initial

conditions from which to produce a forecast, often referred to as

the control forecast. Plausible alternative sets of initial conditions are

generated by making small changes (or perturbations) to the analysis.

At both centers, the aim has been to identify fast-growing

perturbations—ones that will lead to particularly large differences

in the forecasts produced. Nevertheless, the two centers take different

approaches to identifying such fast-growing perturbations.

The ensemble transform bred vector approach used at NCEP

(see Toth & Kalnay, 1997; Wei, Toth, Wobus, & Zhu, 2008) is

backward-looking: It generates perturbations that emphasize the

respects in which recently made forecasts for ti differ most from

one another. By contrast, the singular value decomposition

approach employed at ECMWF (see Buizza et al., 2005) seeks

perturbations that are expected on mathematical grounds to grow

fastest in the near future.10 Each approach has some advantages.

The bred vector approach is low cost, requiring very little

5 For a detailed look at the many equations included in the atmosphere

component of one complex climate model, see UCAR (2009b).
6 Uncertainty regarding the choice of boundary conditions in weather

forecasting models—values for soil moisture, vegetation cover and other proper-

ties of the underlying land or ocean surface—is also relevant and is addressed by

some forecasting groups (see e.g. Buizza et al., 2005). But initial condition

uncertainty is given much more attention.

7 NCEP was then known as the National Meteorological Center (NMC).
8 This paper focuses on medium-range ensemble forecasting with global

models. Ensemble approaches to short-range forecasting for sub-global regions

with mesoscale models (e.g. Gel, Raftery, & Gneiting, 2004; Grimit & Mass, 2002)

are also undergoing rapid development but are not discussed here, due to

limitations of space.
9 The discussion here provides a snapshot of some major recent approaches to

ensemble prediction. Ensemble systems change frequently as computing power

increases and new techniques are developed; this paper’s characterizations of

ensemble prediction systems at particular forecasting centers will likely be out of

date in some respects by the time the paper appears.
10 Ed Lorenz suggested an approach like this already in the 1960s (see Lorenz,

1965, pp. 331–332).
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computation to produce alternative sets of initial conditions,

because it draws upon forecasts already made. The singular value

decomposition approach is more expensive computationally, but

its results are determined by properties of the analysis for ti,

rather than by model behavior in the recent past; this would seem

to be an advantage, since the perturbations that will grow fastest

vary to some extent from day to day—they are state-dependent.

NCEP and ECMWF also give some attention to structural and

parametric uncertainty, but they use indirect means. For instance,

NCEP has allowed alternative sets of initial conditions to reflect

perturbations that are somewhat larger than the estimated

uncertainties in the analysis (Buizza et al., 2005, p. 1080), in

effect inflating initial condition uncertainty in an attempt to

produce the wider range of results that (presumably) would be

obtained if alternative model structures and parameter values

were explored directly. At ECMWF, structural and parametric

uncertainties are addressed indirectly using stochastic physics,

which involves perturbing physical tendencies at each time step

during the simulation. For example, suppose it is calculated that

parameterized sub-grid processes together would warm a locale

by 0.03 1C during a given time step in the simulation. This

calculated contribution from parameterized processes is multi-

plied by a number selected randomly from the interval [0.5, 1.5],

and the result is used in place of the 0.03 1C originally calculated

(see Buizza, Miller, & Palmer, 1999). Again, the aim is to produce

the wider range of results that (presumably) would be obtained if

alternative model structures and parameter values were explored

directly.

With the help of supercomputers, these methods are used to

produce 21 16-day global weather forecasts every 6 h at NCEP and

to produce 51 15-day global weather forecasts every 12 h at

ECMWF (ECMWF, 2006; UCAR, 2009a).

A rather different approach is taken at MSC in Canada, where

21 16-day global forecasts are produced every 12 h using not just

alternative sets of initial conditions, but alternative forecast

models as well. Sets of initial conditions are produced using an

ensemble transform Kalman filter method, which performs data

assimilation on perturbed observations using different versions of

the MSC forecast model, producing 96 sets of initial conditions

(UCAR, 2009a). The average of these sets of initial conditions is

used with the MSC forecasting model in its standard configuration

to produce a control forecast, while each of 20 sets of initial

conditions (selected from the 96 sets produced) is paired with one

alternative version of the MSC forecast model to produce 20 more

forecasts (UCAR, 2009a). These alternative model versions—also

used in the data assimilation process—differ in some of their

parameter values and in how they parameterize some physical

processes. For example, there is variation in the values assigned to

parameters associated with gravity wave drag and turbulent

vertical diffusion and also in the types of parameterizations used

for convection and land surface processes (Environment Canada,

2007). The different parameter values and parameterizations are

judged to be plausible alternatives to those used in the standard

version of the model (Houtekamer and Lefaivre, 1997). So in

contrast to the indirect approaches taken at NCEP and ECMWF,

the ensemble prediction system implemented at MSC investigates

parametric and structural uncertainty directly, by generating

forecasts using different model versions. In addition, stochastic

physics is employed, i.e. physical tendencies associated with

parameterized processes are perturbed at each time step in the

simulation (Table 1).

3.2. Building ensembles for climate prediction

Unlike short-term weather conditions, the climate of the next

decade, or the next century, is not routinely predicted.11 In part,

this is because some of the factors that are believed to influence

long-term climate—such as concentrations of greenhouse ga-

ses—depend on human activities; how these factors evolve over

the next century, and thus how climate will change over the next

century, depends to some extent on human decisions in that

period. So climate prediction studies tend to be ones that

investigate not how climate will actually change, but how climate

would change under emission scenarios that are of scientific or

societal interest.12 If we could see how climate would change

under different emission scenarios, we might conclude that some

scenarios are to be avoided, while others are worth pursuing.

Climate models are used to investigate what climate would be

like under particular emission scenarios. But as noted above, there

is uncertainty about how to best (or even adequately) represent

the climate system when undertaking such predictive tasks. So

far, ensemble studies carried out to investigate this uncertainty

usually fall into one of two categories: Multi-model ensemble

studies and perturbed-physics ensemble studies. The former

typically include models that differ in a host of ways—in some

of the equations they use to represent climate system processes,

in their numerical solution methods, in their spatiotemporal

resolution, etc. Multi-model ensemble studies therefore probe

structural uncertainty (and perhaps parametric uncertainty as

well, depending on the particular models included in the

ensemble). Perturbed-physics studies produce simulations using

a single climate model, but assigning different values to uncertain

parameters, in order to investigate the impacts of parametric

uncertainty. In both multi-model and perturbed-physics studies,

it is not uncommon for a few alternative sets of initial conditions

to be used as well, but structural and parametric uncertainty,

respectively, seem to be the primary concern.

Table 1

Summary of means of accounting for initial condition, parametric and structural uncertainty at three major operational weather forecasting centers.

Initial condition uncertainty Parametric uncertainty Structural uncertainty

ECMWF Alternative initial conditions via

singular value decomposition

Stochastic physics Stochastic physics

MSC Alternative initial conditions via

ensemble transform Kalman filter

Alternative parameter values for

turbulent vertical diffusion, gravity

wave drag

Alternative parameterizations for

convection, land surface processes,

mixing length; stochastic physics

NCEP Alternative initial conditions via

ensemble transform bred vectors

Inflated initial condition uncertaintya Inflated initial condition uncertaintya

a Approach taken as of July 2002 (see Buizza et al., 2005); no accounting of parametric and structural uncertainty is mentioned for NCEP in UCAR (2009a).

11 Seasonal prediction is not discussed here, due to space limitations.
12 Because they investigate what would happen if a scenario were to be

realized, predictive simulations from climate models are often referred to as

projections of future climate.
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Perhaps the most ambitious multi-model ensemble study

completed to date is the third phase of the Coupled Model

Intercomparison Project (CMIP3), which produced simulations of

future climate in support of the latest Intergovernmental Panel on

Climate Change (IPCC) assessment report (Solomon et al., 2007).

Twenty-three complex climate models developed at modeling

centers around the world were used to simulate 21st century

climate under three emission scenarios that represented futures

with ‘‘high’’, ‘‘medium’’ and ‘‘low’’ global emission levels,

respectively (see Meehl et al., 2007).13 In some but not all cases,

a model was run a few times under a given emission scenario,

using different sets of initial conditions (Meehl et al., 2007,

Table 10.4; see also Fig. 1 above). The CMIP3 models differed to

varying degrees in their spatiotemporal resolution, their

parameterization of sub-grid processes, their numerical solution

techniques and their computing platforms (see Randall et al.,

2007, Table 8.1). These differences were not systematically

chosen, however; they were determined by which modeling

groups agreed to participate in the study, by which models those

groups had developed, and by the available computing resources.

The CMIP3 models constitute an ‘‘ensemble of opportunity’’

(Meehl et al., 2007, p. 754; Tebaldi and Knutti, 2007).

The ongoing climateprediction.net project (Allen, 1999; Frame

et al., 2009; Stainforth et al., 2005 ) provides fascinating examples

of perturbed-physics studies. Rather than using supercomputers

to produce a small number of higher-resolution simulations, the

project relies on spare processing power on ordinary home

computers to carry out ensemble studies that produce thousands

of simulations using different versions of a somewhat lower-

resolution (yet still quite complex) climate model. Any interested

member of the public can participate in one of these studies by

downloading a model version (+initial conditions) from the

climateprediction.net website and running it on her home

computer, with the results sent back automatically over the

Internet. A single simulation may take several weeks to a few

months to complete, depending on the computer used and on

how much of its spare processing power is devoted to the

simulation.

Climateprediction.net scientists are currently analyzing results

from one of these perturbed-physics studies, carried out in

cooperation with the British Broadcasting Corporation (BBC).

The study, known as the BBC Climate Change Experiment, is

investigating 21st century climate under the A1B/medium

emission scenario that was also studied in CMIP3 (Frame et al.,

2009). Thousands of versions of HadCM3L, a complex climate

model developed at the UK Hadley Center, were downloaded by

participants (BBC, 2009). Each model version included a unique

combination of values for approximately 70 uncertain para-

meters, including parameters associated with the fall speed of ice

crystals in clouds, the exchange of momentum between the ocean

surface and the atmosphere, and the transfer of moisture from the

soil to the atmosphere via plant transpiration; these combinations

of parameter values all met a chosen plausibility requirement

(Frame et al., 2009). In order to take some account of initial

condition uncertainty, some participants received the same model

version but one of several different sets of initial conditions.14 In

the end, the study produced tens of thousands of simulations of

future climate under the chosen emission scenario.

Perturbed-physics studies also have been carried out with

much more simplified climate models (e.g. Forest, Stone, Sokolov,

Allen, & Webster, 2002; Knutti, Stocker, Joos, & Plattner, 2002;

Meinshausen et al., 2009). These models require minimal

computing time to run, allowing for studies that more closely

approximate the ideal Monte Carlo approach described above.

However, such models only simulate the evolution of highly

aggregate quantities, such as hemispheric (or even global) mean

surface temperature, and thus cannot be used to investigate the

changes in regional climate that are of greatest interest to

decision makers. In addition, because they are so simplified, there

is concern that they may be incapable of predicting rapid changes

in global climate produced by nonlinear feedbacks, which might

be predicted by more complex climate models that represent such

feedbacks explicitly.15

4. Interpreting ensemble results

Ensemble methods transform representational uncertainty

into predictive uncertainty: A set of representations of the

atmosphere or climate system is transformed into a set of

predictive results. But what should be inferred from these results?

This is a matter of some debate, especially in the case of climate

prediction.

Least controversial is the following: Insofar as each model or

model version (+initial conditions) in an ensemble is plausibly

adequate for the predictive task of interest, then the simulations

produced indicate a set of predictive outcomes that are plausible,

given current knowledge.16,17 If these outcomes vary widely, this

implies substantial uncertainty regarding the future. While such a
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Fig. 1. Annual global mean surface temperature (GMST) anomalies from 55

individual CMIP3 simulations (grey) and the average of those anomalies (black).

Anomalies for a given simulation are calculated relative to that simulation’s

average GMST for the period 1980–1999. Projections are for the A1B (’’medium’’)

emission scenario. Figure courtesy of Gavin Schmidt.

13 Most models were used to produce simulations for each of the three

emission scenarios; some models were used to produce simulations for only some

of the scenarios (see Meehl et al., 2007, Table 10.4).

14 In some cases duplicate set-ups were assigned to different participants

(Frame et al., 2009), presumably as a means of checking the experimental design

(Stainforth et al., 2005).
15 Some simple climate models can be tuned to emulate the known behavior

of more complex models (behavior in simulating highly aggregate quantities, such

as global mean surface temperature), raising interesting questions about the

extent to which parametric and structural uncertainty can ultimately be

distinguished (see also Meinshausen, Raper, & Wigley, 2008).
16 This assumes no significant problems with the solution algorithm or

computing platform.
17 In the case of climate projections, these typically will be outcomes that are

plausible under a chosen emission scenario, not necessarily plausible as outcomes

that will actually occur.
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situation may be disappointing, it can be very useful to learn that,

in addition to the outcome predicted by a best-guess/control

simulation, a wide range of other outcomes are similarly

plausible. Indeed, one of the great virtues of ensemble studies is

that they can alert us to the existence of worrisome outcomes that

are plausible but that did not occur in our best-guess simulation,

such as the formation of a destructive winter storm in our region

in a few days time (see Fig. 2) or very significant changes to the

long-term climate of our region.

Yet it is tempting to infer more from ensemble results. If all of

the climate models in an ensemble give predictions that fall

within a rather narrow range, can we infer that there is little

uncertainty about the predictive outcome? Or if 80% of simula-

tions produced by an ensemble weather forecasting system

indicate that there will be measurable snow tomorrow in Chicago,

should we assign a probability of approximately 0.8 to the

occurrence of measurable snow? More generally, can ensemble

results be transformed in a systematic way into probability

density functions (PDFs) whose implied probabilities for different

outcomes can be expected to have a desired level of reliability,

skill or utility?18

There are at least two possible approaches to arguing that an

ensemble study can be expected to provide desired information,

including probabilistic information. The first approach is deduc-

tive and focuses on the design of the study, including the selection

of models and initial conditions, and argues that this design is

such that the results can be expected to provide the desired

information. The second approach is inductive and argues that an

ensemble system has been successful enough at providing the

desired sort of information on relevant past occasions that it can

be expected to do so in the present case(s) as well. It is suggested

in what follows that, while design-based arguments generally

cannot be given for claims about the information that today’s

ensembles can be expected to provide, performance-based

arguments might be made in the case of ensemble weather

prediction, but remain out of reach in the case of ensemble

climate prediction.

4.1. Weather: Post-processing and complicated inductive arguments

Are any of today’s ensemble weather forecasting systems

designed such that (i) for a wide range of predictive variables, we

can expect that the true/observed value of the variable will almost

always fall within the range of values predicted by the ensemble?

Are any of today’s ensemble weather forecasting systems

designed such that (ii) for a wide range of possible events, we

can expect the fraction of ensemble members that predict a given

event to be a reliable estimate of the probability of that event

(e.g. 7/21 simulations gives a probability E0.33)? Unfortunately,

it seems not.

A design-based argument for (i) would require that an

ensemble forecasting system sample so much of current un-

certainty about how to represent the atmosphere, or else sample

that uncertainty in such a strategic way, that we can expect its

predictions to almost always span a range of values that includes

the true/observed value. But this cannot be claimed of today’s

ensemble forecasting systems. Perhaps the most obvious problem

is their treatment of parametric and structural uncertainty;

methods currently used to account for parametric and structural

uncertainty (see Section 3.1) cannot be argued to sample that

uncertainty in a sufficiently thorough or strategic way. The most

direct approach is taken at MSC, where the forecasting system

includes model versions with a few differences in their parameter

values and structures. But these differences were not chosen with

the aim of spanning some space of plausible options, if such a

space can even be defined.

The most straightforward design-based argument for (ii) is

thwarted for similar reasons. It would require that simulations

produced by an ensemble forecasting system are, by design,

something like a random sample from the simulations that would

be produced in a thorough investigation of representational

uncertainty. Yet today’s ensemble prediction systems clearly

have not been designed in this way, since the space of models

(from which the sampling would occur) has not even been

defined. Moreover, as noted above, it is not entirely clear what

such a space would amount to, given structural uncertainty.

Can performance-based arguments for (i) and (ii) be given

instead? These would require not just that an ensemble forecast-

ing system be found to almost always capture observations and to

give reliable probabilistic forecasts in a set of past cases, but also

that there is reason to expect that the forecasting system will

perform at least as well in the future cases of interest as it did in

those past cases.

Performance-based arguments for (i) and (ii) cannot be given

for raw results from today’s ensembles, since those results are

typically found to display bias and underdispersion (see e.g.

Fig. 2. An intense storm (top right, ‘‘verification’’) over Europe is predicted by

some members of the ECMWF ensemble but not by the best-guess forecast (top

left). Forecasts were for surface pressure on 26 December 1999, initialized on 24

December 1999. The destructive storm was later named ‘‘Lothar’’. Only seven of

the 51 ECMWF ensemble members are shown here. (Adapted from Palmer,

Doblas-Reyes, Hagedorn, & Weisheimer, 2005, Fig. 3.)

18 A common measure of forecast quality is the Brier Skill Score, which

compares the mean square error of a set of probabilistic forecasts for an event with

the mean square error of a set of reference forecasts, typically forecasts of the

climatological mean frequency of the event (see Toth, Talagrand, Candille, & Zhu,

2003). It can be shown that the Brier Skill Score is higher to the extent that

forecasts have reliability and resolution. Roughly, forecasts are reliable (or

calibrated) if their assigned probabilities for an event are consistent with observed

relative frequencies, and they are resolving (or sharp) to the extent that they assign

probabilities that differ from the climatological mean frequency of the event (see

Stephenson, 2003, pp. 210–212). Other measures of forecast quality advocated

recently include the ignorance score (Roulston & Smith, 2002) and the effective

daily interest rate (Hagedorn & Smith, 2008).
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Buizza et al., 2005; Wilks & Hamill, 2007).19 Nevertheless, there is

currently great interest in post-processing ensemble results, i.e. in

using information about the past performance of an ensemble to

try to correct for biases and spread deficiencies and, ideally, to

transform raw ensemble results into PDFs that are highly

informative (e.g. Bröcker & Smith, 2007; Wilks & Hamill, 2007).

Some post-processing is already done at operational forecasting

centers, often using relatively simple methods, e.g. applying a bias

correction in light of recent errors, with probabilistic forecasts

then produced according to the fraction of bias-corrected

ensemble members that predict the outcome of interest (UCAR,

2009a; see Environment Canada, 2009 for current forecasts). In

some cases, even simple bias-correction techniques can substan-

tially improve the performance of an ensemble prediction system.

Recently scientists have demonstrated that a number of more

complex post-processing methods, some of which deliver full

PDFs, have the potential to further improve probabilistic forecasts

for temperature, precipitation and other quantities (see e.g.

Bröcker & Smith, 2007; Hagedorn, Hamill, & Whitaker, 2008;

Hamill, Whitaker, & Mullen, 2006; Wilson, Beauregard, Raftery, &

Verret, 2007).

So even if performance-based arguments for (i) and (ii) cannot

be given for raw results from today’s ensembles, they might be

given for results that have undergone post-processing, if that

post-processing is effective enough. To the extent that (i) and (ii)

still prove too demanding, it might be possible to argue for

weaker versions, such as (i0) when the value of variable X is

predicted at lead time L, it can be expected that the observed

value of X will fall within the range of bias-corrected results

produced by this ensemble on about p% of occasions, or (ii0) for

probabilistic forecasts of events of type E made at lead time L, this

ensemble prediction system can be expected to display approxi-

mately skill S. Again, performance-based arguments would

require that an ensemble prediction system is found to achieve

the levels of performance specified in (i0) and (ii0) in a set of past

cases and that there is good reason to expect it to perform

similarly (if not better) in the future cases of interest.

But can the latter requirement ever be met? That is, can we

ever have good reason to expect that a forecasting system will

continue to perform in (approximately) some specified way in the

future? In the spirit of Norton’s (2003) material theory of

induction, it is suggested here that there can be cases in which

we have good reason to expect this, given what we know about

the particular forecasting system and the predictive variables of

interest. For instance, if we know that a forecasting system

already has a long and stable track-record of performance with

respect to a predictive variable, and we have reason to believe

that neither the forecasting system nor the relevant causes at

work in the atmosphere are now different in ways that will

significantly alter the forecasting system’s performance with

respect to that predictive variable, then it seems we do have a

case for expecting roughly that same performance to continue.

To illustrate: Suppose that in each of the last eight summers a

particular ensemble system has delivered daily forecasts of the

probability of E: The temperature in San Diego will exceed 30 1C

on at least one of the next three days. Suppose further that in each

of those summers the forecasts of E had a Brier Skill Score

between 0.44 and 0.48, with a mean of 0.46. If we have reason to

believe that neither the forecasting system nor the causes of hot

days in San Diego will be different this summer in ways that will

significantly alter the forecasting system’s performance (relative

to the previous eight summers), then we have reason to expect

that this summer the forecasts of E will have a Brier Skill Score of

approximately 0.46, i.e. will be in the vicinity of 0.44–0.48. Our

expectation is grounded not just in the stability of past

performance—we are not making a simple enumerative induc-

tion—but also in the domain-specific background knowledge we

employ in concluding that there is nothing special about this

summer’s forecasts, i.e. that the sorts of things that would make

for anomalous forecast performance (relative to performance in

the last eight summers) are absent.20 The strength of our

inductive inference depends on the strength of that background

knowledge. To the extent that we can confidently identify what

would make for anomalous forecast performance (relative to

performance in the last eight summers) and show those factors to

be absent, our inference is stronger; to the extent that we have

little idea what would make for anomalous forecast performance

or whether such factors are present, our inference is weaker.

In practice, when it comes to today’s ensembles, some

additional complications arise. First, because ensemble forecast-

ing systems (including the observing systems that provide input

to data assimilation) undergo frequent development and change,

most available performance data is not for today’s systems but for

earlier versions of those systems. This problem might be partly

overcome with the help of ‘‘reforecasts’’—forecasts produced for

past periods using current models and current methods for

generating alternative initial conditions (see e.g. Hamill et al.,

2006). Alternatively, scientists might freeze today’s forecasting

systems and continue to make forecasts with them, even as they

also develop and use new versions, so that eventually there is a

significant track-record of performance for today’s versions.21

Second, there is the complication that Earth’s climate is thought

to be slowly changing over time due to rising greenhouse gas

concentrations and other factors. In many cases, this might not

undermine expectations of approximate stability of performance

in the near term, but it should be considered, and it generally will

be problematic if one wants to form expectations about

performance in the further future.

These complications notwithstanding, in the end it seems

quite plausible that performance-based arguments for today’s

ensembles could be developed for at least some instantiations of

(i0) and (ii0) and perhaps also for other claims about the

information that today’s ensemble weather forecasting systems

can provide. Whether such arguments can be given for aspects of

performance that are relevant to important practical decisions

(e.g. decisions about when to evacuate a region to avoid

hurricane-related deaths) remains to be seen.

In this connection, notice that (i), (ii), (i0) and (ii0) all concern

the expected performance of an ensemble forecasting system in a

set of trials. It may seem natural to make assignments of

probability in single cases as well.22 For instance, if it can be

expected that, over a given set of trials, an ensemble prediction

system will give (approximately) reliable forecasts of the prob-

ability of event E, then following any one of those trials it may

seem natural to assign to E a probability equal to that forecasted

by the ensemble system. Thus, when the probability of snow

19 A set of predictions for a variable is biased if its mean value tends to be

greater than the observed value of the variable or tends to be less than that

observed value. A set of predictions for a variable is underdispersive if observed

values of the variable do not fall within the range spanned by the ensemble’s

results as often as would be expected if the results and the observations were

being drawn from the same underlying PDF.

20 In effect we are choosing a reference class for this set of forecasts and

arguing on meteorological (and perhaps statistical) grounds that our choice is a

good one, i.e. that there are no other features of this set of forecasts that are

relevant to its classification for purposes of determining expected performance.
21 This would not avoid changes in the observing systems that provide input

to data assimilation.
22 Some frequentists deny that it makes sense to assign probabilities to single

cases.
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tomorrow in Chicago is forecasted to be 0.8, a probability of about

0.8 would be assigned. But care must be taken here. The ensemble

system gives approximately reliable forecasts of the probability of

snow on the following day in Chicago; but if the event being

forecasted is better classified in some other way, e.g. as the

occurrence snow on the following day in Chicago when it is

already snowing today in Des Moines, then a probabilistic forecast

from an ensemble system that is expected to give reliable

forecasts for this other class of events should be preferred instead,

if it is available.23 Further challenges will arise if two or more

ensemble prediction systems are expected to give reliable

forecasts for events in the chosen class, since they may never-

theless assign different probabilities in the particular case at hand.

4.2. Climate: Doing our best with uncertainty

When it comes to ensemble climate prediction today, neither

design-based arguments for (i) or (ii) nor performance-based

arguments for instantiations of (i0) or (ii0) can be given. Design-

based arguments for (i) and (ii) are out of reach for the same

reasons as in the weather case—today’s ensembles are not

designed to sample representational uncertainty in a thorough

or strategic way. Today’s multi-model ensembles are ensembles

of opportunity, while perturbed-physics ensembles take no

account of structural uncertainty. And in both multi-model and

perturbed-physics studies, initial condition uncertainty is often

given only cursory treatment.24

Performance-based arguments of the sort discussed above are

out of reach in the first instance because of the long-term nature of

the climate predictions of interest: It will take a very long time to

collect much data on the performance of an ensemble in predicting

the probability that a particular change in climate will have

occurred after 50 years. And we do not have centuries and

centuries of high-quality observations of past climatic conditions

on which to evaluate performance either. (If such observational

data were available, we might opt for reforecasting.) Simulations of

20th century climate can be compared with 20th century

observational data, but the extent to which such simulations have

been tuned to those data is often unclear, complicating attempts to

reason about the expected performance of today’s ensembles in

simulating 21st century climate, when greenhouse gas concentra-

tions are expected to be substantially higher.25 Some estimates of

climatic conditions in the more distant past are also available (from

tree rings, ice cores, etc.), but there is more uncertainty associated

with these data, and greenhouse gas concentrations in past periods

are often lower than those anticipated for the 21st century. In the

end, the available data—in conjunction with current understanding

of the climate system—are not sufficient to support the kind of

performance-based arguments discussed above.26

Nevertheless, it is becoming more and more common for

results from individual multi-model and perturbed-physics

studies to be transformed into probabilistic projections of future

climate, using Bayesian and other techniques (e.g. Furrer, Sain,

Nychka, & Meehl, 2007; Meinshausen et al., 2009; Murphy et al.,

2007; Tebaldi, Smith, Nychka, & Mearns, 2005). In such cases, a set

of simulation results is transformed into a PDF indicating which

values of a given predictive variable are more and less probable.

For instance, the PDF might imply that, under a chosen emission

scenario, there is a probability of approximately 0.5 that global

mean surface temperature in the period 2080–2099 will exceed

that of the period 1980–1999 by at least 2 1C.

The reliability of these probabilistic projections is unknown,

and in many cases they lack robustness. For instance, PDFs

produced in different ensemble studies for the same quantity, e.g.

for changes in global mean surface temperature by the end of the

21st century under a given emission scenario, can differ markedly

(see Meehl et al., 2007, Fig. 10.28). Moreover, given the highly

contingent way in which some of today’s ensembles are

assembled, the models that are included ‘‘might be different in

a subsequent ensemble, therefore changing the result even if the

knowledge about the climate system has not changed’’ (Tebaldi &

Knutti, 2007, p. 2068). Thus, some scientists who carry out

ensemble studies of future climate either refuse to transform raw

results into PDFs via post-processing algorithms (see Stainforth

et al., 2005, 2007) or else insist that, if PDFs are produced, they

should be accompanied by an estimate of the chance of a ‘‘big

surprise’’—an outcome significantly outside the range into which

the PDF implies the outcome is almost certain to fall (Smith,

2009).

It is important to recognize, however, that full PDFs are not the

only option for conveying uncertainty about changes in future

climate. For instance, Kandlikar, Risbey, and Dessai (2005)

identify several ways of representing uncertainty: In the best

case, when sources of uncertainty are well understood, it can be

appropriate to convey uncertainty via full PDFs, but in other cases

it will be more appropriate to offer only a range in which one

expects the value of a predictive variable to fall with some

specified probability, or to indicate the expected sign of a change

without assigning a magnitude, etc. On their view, uncertainty

should be expressed using the most ‘‘precise’’ means that can be

justified, but not more precise means (ibid; see also Risbey &

Kandlikar, 2007).

Building on this, it might be argued that, whatever depiction of

uncertainty scientists offer to decision makers for a predictive

variable of interest, it should meet three requirements: Ownership,

justification and robustness (Parker, in press). In brief, this means

that the representation of uncertainty should be one that the

scientists will claim as their own, i.e. as accurately depicting their

uncertainty (ownership); for which the scientists can offer a

reasoned justification, after striving to consider all of the

available, relevant evidence (justification); and that is not strongly

dependent on contentious assumptions or expected to change

significantly in the very near future as incremental scientific

progress occurs (robustness). For most PDFs produced in today’s

ensemble climate prediction studies, especially those concerning

long-term changes, at least one of these requirements remains

unmet (see Parker, in press).

To see a concrete example of an alternative to a full PDF,

consider Table 2, adapted from the latest IPCC assessment report

(IPCC, 2007). For each of three emission scenarios, the table shows

23 This is the reference class problem again (see Hajek, 2007). As in the case of

a particular set of forecasts (see footnote 20), our task here is to argue on

combined meteorological and statistical grounds that a particular classification of

an event of interest is best. If classes A and B are both possibilities, and there is an

ensemble system available that is expected to give reliable forecasts for events in

class A, but there is currently no such system available for events in class B, then

class A is the better choice. If for each class there is an ensemble system that is

expected to give reliable forecasts for events in that class, and class B is a proper

subset of class A, then class B is the better choice. In other situations, the choice

may be more difficult.
24 Ensemble studies with very simplified climate models might seem

promising candidates for design-based arguments for (i) or (ii). However it is

difficult to tell the extent to which these studies actually probe structural

uncertainty. See also footnote 15.
25 Tuning involves ad hoc adjustments to a model to achieve better fit with

observational data or with the performance of another model.
26 Of course, comparing simulations from today’s ensembles with available

climatic data can still be quite valuable, since we may learn about current

(footnote continued)

strengths and weaknesses of the ensembles and may come to see how to improve

our models. See also Smith, 2002.
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a best estimate of the change in global mean surface temperature

that would occur, as well as a likely range. The best estimate was

chosen to correspond to the average of the values predicted by the

state-of-the-art models included in CMIP3, while the likely range

is that into which the experts producing the report judged there

to be at least a 66% chance that the warming would fall (see Meehl

et al., 2007 for details). Crucially, the experts identified these

ranges by considering not just results from a single ensemble

study, but results from numerous studies, factoring in as well that

these studies had various known shortcomings (see Meehl et al.,

2007, pp. 809–810). In the end, rather than offering a full PDF, the

experts opted to report where some of the probability mass

should be placed—namely, at least 66% of it.27

Few quantities are as well understood as changes in global

mean surface temperature. For others, such as changes in regional

precipitation, even likely ranges might be difficult to justify; in

these cases, it would seem better to use a still coarser means of

conveying uncertainty, e.g. reporting only an order of magnitude

estimate of the change, or just its expected sign, or even that its

expected sign is ambiguous (see also Kandlikar et al., 2005; Risbey

& Kandlikar, 2007).28 The aim should be to offer depictions

of uncertainty that are as responsive as possible to the needs

of decision makers but that also accurately reflect the limits of

current knowledge.

5. Concluding remarks

Ensemble methods now play a central role in simulation-based

weather and climate prediction. These methods acknowledge

representational uncertainty and seek to gauge its predictive

implications, going beyond a simple best-guess forecast or

projection. However, interpreting the results of ensemble studies

remains a challenging task, with probabilistic interpretations

particularly contentious. While complicated inductive arguments

might be made for the trustworthiness of some probabilistic

weather forecasts produced in ensemble studies, the same cannot

be said for PDFs produced for long-term climate variables.

Consequently, in many cases, alternative means of communicat-

ing uncertainty about future changes in climate should be

employed instead. The aim should be to offer depictions of un-

certainty that are as responsive as possible to the needs of

decision makers but that also accurately reflect the limits of

current knowledge.
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