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Executive Summary  

Climate model simulations provide a cornerstone for climate change assessments. This paper summarizes the 
discussions and conclusions of the Intergovernmental Panel on Climate Change (IPCC) Expert Meeting on 
Assessing and Combining Multi Model Climate Projections, which was held in Boulder, USA on 25-27 January 
2010. It seeks to briefly summarize methods used in assessing the quality and reliability of climate model 
simulations and in combining results from multiple models. It is intended as a guide for future IPCC Lead 
Authors as well as scientists using results from model intercomparison projects. This paper provides 
recommendations for good practice in using multi-model ensembles for detection and attribution, model 
evaluation and global climate projections as well as regional projections relevant for impact and adaptation 
studies. It illustrates the potential for, and limitations of, combining multiple models for selected applications. 
Criteria for decision making concerning model quality and performance metrics, model weighting and averaging 
are recommended. This paper does not, however, provide specific recommendations regarding which 
performance metrics to use, since this will need to be decided for each application separately. 
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1. Key Terminology 
 
Many of the definitions below reflect the broad usage of 
these terms in climate science. While some terms are 
occasionally used interchangeably, the definitions pre-
sented here attempt to provide clear distinctions be-
tween them, while still encompassing the wide range of 
meanings encountered by meeting participants.  
 
Model evaluation: The process of comparing model 
output with observations (or another model) either quali-
tatively using diagnostics or quantitatively using perform-
ance metrics. During model development, it is also 
common to compare new models with previous versions 
to assess relative improvements. 
 
Diagnostic: A quantity derived from model output, of-
ten used for comparison with observations, or intercom-
parison of the output from different models. Examples 
include spatial maps, time-series and frequency distribu-
tions. More specific examples would be the trend in 
global mean temperature over a certain time period, or 
the climate sensitivity of a model. 
 
Performance metric: A quantitative measure of 
agreement between a simulated and observed quantity 
which can be used to assess the performance of individ-
ual models. A performance metric may target a specific 
process to quantify how well that process is represented 
in a model. The term metric is used in different ways in 
climate science, for example for metrics such as radiative 
forcing or global warming potential. In IPCC (2007) it is 
defined as a consistent measurement of a characteristic 
of an object or activity that is otherwise difficult to quan-
tify. More generally, it is a synonym for ‘measure’ or 
‘standard of measurement’. It often also refers more 
specifically to a measure of the difference (or distance) 
between two models or a model and observations. A 
performance metric is a statistical measure of agree-
ment between a simulated and observed quantity (or co-
variability between quantities) which can be used to as-
sign a quantitative measure of performance (‘grade’) to 
individual models. Generally a performance metric is a 
quantity derived from a diagnostic. A performance metric 
can target specific processes, i.e., measure agreement 
between a model simulation and observations (or possi-
bly output from a process model such as a Large Eddy 
Simulation) to quantify how well a specific process is rep-
resented in a model. Constructing quantitative perform-
ance metrics for a range of observationally-based diag-
nostics allows visualization of several aspects of a 
model’s performance. Synthesis of a model’s perform-

ance in this way can facilitate identification of missing or 
inadequately modelled processes in individual models, is 
useful for the assessment of a generation of community-
wide collections of models (in the case of systematic bi-
ases), or can be used for a quantitative assessment of 
model improvements (e.g., by comparing results from 
Phases 3 and 5 of the Coupled Model Intercomparison 
Project CMIP3 and CMIP5). 
 
Model quality metric, model quality index: A 
measure designed to infer the skill or appropriateness of 
a model for a specific purpose, obtained by combining 
performance metrics that are considered to be important 
for a particular application. It defines a measure of the 
quality or ‘goodness’ of a model, given the purposes for 
which the model is to be used, and is based on relevant 
performance metrics including one or more variables. In 
combination with a formal statistical framework, such a 
metric can be used to define model weights in a multi-
model (or perturbed-physics) context. A model quality in-
dex may take into account model construction, spatio-
temporal resolution, or inclusion of certain components 
(e.g., carbon cycle) in an ad-hoc and possibly subjective 
way, e.g., to identify subsets of models. 
 
Ensemble: A group of comparable model simulations. 
The ensemble can be used to gain a more accurate es-
timate of a model property through the provision of a 
larger sample size, e.g., of a climatological mean of the 
frequency of some rare event. Variation of the results 
across the ensemble members gives an estimate of un-
certainty. Ensembles made with the same model but dif-
ferent initial conditions only characterise the uncertainty 
associated with internal climate variability, whereas 
multi-model ensembles including simulations by several 
models also include the impact of model differences. 
Nevertheless, the multi-model ensemble is not designed 
to sample uncertainties in a systematic way and can be 
considered an ensemble of opportunity. Perturbed-
physics parameter ensembles are ensembles in which 
model parameters are varied in a systematic manner, 
aiming to produce a more systematic estimate of single-
model uncertainty than is possible with traditional multi-
model ensembles. 
 
Multi-model mean (un-weighted): An average of 
simulations in a multi-model ensemble, treating all mod-
els equally. Depending on the application, if more than 
one realization from a given model is available (differing 
only in initial conditions), all realizations for a given 
model might be averaged together before averaging 
with other models.  
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Multi-model mean (weighted): An average across 
all simulations in a multi-model dataset that does not 
treat all models equally. Model ‘weights’ are generally 
derived from some measure of a model’s ability to simu-
late the observed climate (i.e., a model quality met-
ric/index), based on how processes are implemented or 
based on expert judgment. Weights may also incorpo-
rate information about model independence. In climate 
model projections, as in any other application, the de-
termination of weights should be a reflection of an ex-
plicitly defined statistical model or framework. 
 
2. Background and Methods 
 
Climate model results provide the basis for projections of 
future climate change. Previous assessment reports in-
cluded model evaluation but avoided weighting or rank-
ing models. Projections and uncertainties were based 
mostly on a 'one model, one vote' approach, despite the 
fact that models differed in terms of resolution, proc-
esses included, forcings and agreement with observa-
tions. Projections in the IPCC’s Fifth Assessment Report 
(AR5) will be based largely on CMIP5 of the World Cli-
mate Research Programme (WCRP), a collaborative 
process in which the research and modelling community 
has agreed on the type of simulations to be performed. 
While many different types of climate models exist, the 
following discussion focuses on the global dynamical 
models included in the CMIP project. 
 
Uncertainties in climate modelling arise from uncertain-
ties in initial conditions, boundary conditions (e.g., a ra-
diative forcing scenario), observational uncertainties, un-
certainties in model parameters and structural uncertain-
ties resulting from the fact that some processes in the 
climate system are not fully understood or are impossible 
to resolve due to computational constraints. The wide-
spread participation in CMIP provides some perspective 
on model uncertainty. Nevertheless, intercomparisons 
that facilitate systematic multi-model evaluation are not 
designed to yield formal error estimates, and are in es-
sence ‘ensembles of opportunity’. The spread of a mul-
tiple model ensemble is therefore rarely a direct meas-
ure of uncertainty, particularly given that models are un-
likely to be independent, but the spread can help to 
characterize uncertainty. This involves understanding how 
the variation across an ensemble was generated, mak-
ing assumptions about the appropriate statistical frame-
work, and choosing appropriate model quality metrics. 
Such topics are only beginning to be addressed by the 
research community (e.g., Randall et al., 2007; Tebaldi 
and Knutti, 2007; Gleckler et al., 2008; Knutti, 2008; 

Reichler and Kim, 2008; Waugh and Eyring, 2008; Pierce 
et al., 2009; Santer et al., 2009; Annan and Hargreaves, 
2010; Knutti, 2010; Knutti et al., 2010). 
 
Compared to CMIP3, the number of models and model 
versions may increase in CMIP5. Some groups may sub-
mit multiple models or versions of the same model with 
different parameter settings and with different model 
components included. For example, some but not all of 
the new models will include interactive representations 
of biogeochemical cycles (carbon and nitrogen), gas-
phase chemistry, aerosols, ice sheets, land use, dynamic 
vegetation, or a full representation of the stratosphere. 
The new generation of models is therefore likely to be 
more heterogeneous than in earlier model intercompari-
sons, which makes a simple model average increasingly 
difficult to defend and to interpret. In addition, some 
studies may wish to make use of model output from 
earlier CMIP phases or other non-CMIP sources.  
 
The reliability of projections might be improved if models 
are weighted according to some measure of skill and if 
their interdependencies are taken into account, or if only 
subsets of models are considered. Indeed such methods 
using forecast verification have been shown to be supe-
rior to simple averages in the area of weather and sea-
sonal forecasting (Stephenson et al., 2005). Since there 
is little opportunity to verify climate forecasts on times-
cales of decades to centuries (except for a realization of 
the 20th century), the skill or performance of the models 
needs to be defined, for example, by comparing simu-
lated patterns of present-day climate to observations. 
Such performance metrics are useful but not unique, and 
often it is unclear how they relate to the projection of in-
terest. Defining a set of criteria for a model to be 'credi-
ble' or agreeing on a quality metric is therefore difficult. 
However, it should be noted that there have been de 
facto model selections for a long time, in that simula-
tions from earlier model versions are largely discarded 
when new versions are developed. For example, results 
produced for the Third Assessment Report of the IPCC 
were not directly included in the projections chapters of 
the Fourth Assessment Report unless an older model 
was used again in CMIP3. If we indeed do not clearly 
know how to evaluate and select models for improving 
the reliability of projections, then discarding older results 
out of hand is a questionable practice. This may again 
become relevant when deciding on the use of results 
from the AR4 CMIP3 dataset along with CMIP5 in AR5. 
 
Understanding results based on model ensembles re-
quires an understanding of the method of generation of 
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the ensemble and the statistical framework used to in-
terpret it. Methods of generation may include sampling 
of uncertain initial model states, parameter values or 
structural differences. Statistical frameworks in published 
methods using ensembles to quantify uncertainty may 
assume (perhaps implicitly):  
 
a. that each ensemble member is sampled from a dis-

tribution centered around the truth (‘truth plus error’ 
view) (e.g., Tebaldi et al., 2005; Greene et al., 
2006; Furrer et al., 2007; Smith et al., 2009). In this 
case, perfect independent models in an ensemble 
would be random draws from a distribution centered 
on observations. 

 
Alternatively, a method may assume:  
 
b. that each of the members is considered to be ‘ex-

changeable’ with the other members and with the 
real system  (e.g., Murphy et al., 2007; Perkins et 
al., 2007; Jackson et al., 2008; Annan and Har-
greaves, 2010). In this case, observations are 
viewed as a single random draw from an imagined 
distribution of the space of all possible but equally 
credible climate models and all possible outcomes of 
Earth’s chaotic processes. A ‘perfect’ independent 
model in this case is also a random draw from the 
same distribution, and so is ‘indistinguishable’ from 
the observations in the statistical model. 

 
With the assumption of statistical model (a), uncertain-
ties in predictions should tend to zero as more models 
are included, whereas with (b), we anticipate uncertain-
ties to converge to a value related to the size of the dis-
tribution of all outcomes (Lopez et al., 2006; Knutti et 
al., 2010). While both approaches are common in pub-
lished literature, the relationship between the method of 
ensemble generation and statistical model is rarely ex-
plicitly stated.  
 
The second main distinction in published methods is 
whether all models are treated equally or whether they 
are weighted based on their performance (see Knutti, 
2010 for an overview). Recent studies have begun to ex-
plore the value of weighting the model projections based 
on their performance measured by process evaluation, 
agreement with present-day observations, past climate 
or observed trends, with the goal of improving the multi-
model mean projection and more accurately quantifying 
uncertainties (Schmittner et al., 2005; Connolley and 
Bracegirdle, 2007; Murphy et al., 2007; Waugh and Ey-
ring, 2008). Model quality information has also been 

used in recent multi-model detection and attribution 
studies (Pierce et al., 2009; Santer et al., 2009). Several 
studies have pointed out difficulties in weighting models 
and in interpreting model spread in general. Formal sta-
tistical methods can be powerful tools to synthesize 
model results, but there is also a danger of overconfi-
dence if the models are lacking important processes and 
if model error, uncertainties in observations, and the ro-
bustness of statistical assumptions are not properly as-
sessed (Tebaldi and Knutti, 2007; Knutti et al., 2010). A 
robust approach to assigning weights to individual model 
projections of climate change has yet to be identified. 
Extensive research is needed to develop justifiable meth-
ods for constructing indices that can be used for weight-
ing model projections for a particular purpose. Studies 
should employ formal statistical frameworks rather than 
using ad hoc techniques. It is expected that progress in 
this area will likely depend on the variable, spatial and 
temporal scale of interest. Finally, it should be noted that 
few studies have addressed the issue of structural model 
inadequacies, i.e., errors which are common to all gen-
eral circulation models (GCMs). 
 
User needs frequently also include assessments of re-
gional climate information. However, there is a danger 
of over-interpretation or inappropriate application of cli-
mate information, such as using a single GCM grid cell 
to represent a point locality. There is therefore a general 
need for guidance of a wide community of users for 
multi-model GCM climate projection information plus re-
gional climate models, downscaling procedures and 
other means to provide climate information for assess-
ments. Difficulties arise because results of regional mod-
els are affected both by the driving global model as well 
as the regional model. There have been efforts in com-
bining global and regional model results from past re-
search programs (e.g., PRUDENCE) and continue in the 
present with ongoing GCM and Regional Climate Models 
(RCM) simulations programs (Mearns et al., 2009). The 
relationship between the driving GCM and the resulting 
simulation with RCMs provides interesting opportunities 
for new approaches to quantify uncertainties. Empirical-
statistical downscaling (ESD) is computationally cheaper 
than RCMs, and hence more practical for downscaling 
large ensembles and long time intervals (Benestad, 
2005) although ESD suffers from possible out-of-sample 
issues.  
 
3. Recommendations 
 
In the following, a series of recommendations towards 
‘best practices’ in ‘Assessing and Combining Multi-model 
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Climate Projections’ agreed on by the meeting partici-
pants are provided. Most of the recommendations are 
based on literature and experience with GCMs but apply 
similarly to emerging ensembles of regional models 
(e.g., ENSEMBLES, NARCCAP). Some recommendations 
even apply to ensembles of other types of numerical 
models.  
 
The participants of the IPCC Expert Meeting on Assess-
ing and Combining Multi Model Climate Projections are 
not in a position to provide a ‘recipe’ to assess the litera-
ture and results from the CMIP3/5 simulations. Here, an 
attempt is made to give good practice guidelines for 
both scientific studies and authors of IPCC chapters. 
While the points are generic, their applicability will de-
pend on the question of interest, the spatial and tempo-
ral scale of the analysis and the availability of other 
sources of information. 
 
3.1 Recommendations for Ensembles  
When analyzing results from multi-model ensembles, the 
following points should be taken into account: 
 
• Forming and interpreting ensembles for a particular 

purpose requires an understanding of the variations 
between model simulations and model set-up (e.g., 
internal variability, parameter perturbations, struc-
tural differences, see Section 2), and clarity about 
the assumptions, e.g., about model independence, 

exchangeability, and the statistical model that is be-
ing used or assumed (Box 3.1). 

 
• The distinction between ‘best effort’ simulations 

(i.e., the results from the default version of a model 
submitted to a multi-model database) and perturbed 
physics ensembles is important and must be recog-
nized. Perturbed physics ensembles can provide use-
ful information about the spread of possible future 
climate change and can address model diversity in 
ways that best effort runs are unable to do. How-
ever, combining perturbed physics and best effort 
results from different models is not straightforward. 
An additional complexity arises from the fact that 
different model configurations may be used for dif-
ferent experiments (e.g., a modelling group may not 
use the same model version for decadal prediction 
experiments as it does for century scale simula-
tions).  
 

• In many cases it may be appropriate to consider 
simulations from CMIP3 and combine CMIP3 and 
CMIP5 recognizing differences in specifications (e.g., 
differences in forcing scenarios). IPCC assessments 
should consider the large amount of scientific work 
on CMIP3, in particular in cases where lack of time 
prevents an in depth analysis of CMIP5. It is also 
useful to track model improvement through different 
generations of models. 

Box 3.1: Examples of Projections Derived Using Complex Multivariate Statistical Techniques 
which Express Projections as Probability Density Functions 

 
Because of the relative paucity of simple observational constraints (Box 3.2) and because of the requirement to 
produce projections for multiple variables that are physically consistent within the model context, complex statistical 
techniques have been employed. The majority of these are based on a Bayesian approach in which prior distribu-
tions of model simulations are weighted by their ability to reproduce present day climatological variables and trends 
to produce posterior predictive distributions of climate variables (see Box 3.1, Figure 1). Numerous examples of 
such Bayesian approaches employing output from the multi-model archives are found in the literature  (e.g., Giorgi 
and Mearns 2003; Tebaldi et al., 2005; Greene et al., 2006; Lopez et al., 2006; Furrer et al., 2007). Differences in 
the projected PDFs for the same climate variables produced by the different techniques indicate sensitivity to the 
specification and implementation of the Bayesian statistical framework which has still to be resolved (Tebaldi and 
Knutti, 2007). 
 
Recent approaches have also employed perturbed physics ensembles in which perturbations are made to the pa-
rameters in a single modelling structure (e.g., Murphy et al., 2007; Murphy et al., 2009). In this case it is possible 
to illustrate a statistical framework to produce PDFs of future change (e.g., Rougier, 2007). Assume that we can 
express a climate model output, y, as a function, f, of its input parameters, x; y = f(x) + ε where y = (yh , yf ) is 
composed of historical and future simulation variables, and ε is the error term that accounts for uncertainty in ob-
servations, from the use of emulators (see below), and from structural uncertainty as inferred from other models, 
then it is possible to sample the input space x  by varying parameters in the model and constrain that input space 
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• Consideration needs to be given to cases where the 
number of ensemble members or simulations differs 
between contributing models. The single model’s 
ensemble size should not inappropriately determine 
the weight given to any individual model in the 
multi-model ensemble. In some cases ensemble 
members may need to be averaged first before 
combining different models, while in other cases 
only one member may be used for each model. 

 
• Ensemble members may not represent estimates of 

the climate system behaviour (trajectory) entirely 
independent of one another. This is likely true of 
members that simply represent different versions of 

the same model or use the same initial conditions. 
But even different models may share components 
and choices of parameterizations of processes and 
may have been calibrated using the same data sets. 
There is currently no ‘best practice’ approach to the 
characterization and combination of inter-dependent 
ensemble members, in fact there is no straight-
forward or unique way to characterize model 
dependence. 

 
3.2 Recommendations for Model Evaluation 

and Performance Metrics 
A few studies have identified a relationship between skill 
in simulating certain aspects of the observed climate and 

according to the likelihood of each model version computed by comparing the simulation of historical climate with 
that observed. Multiple observational variables may be used in the likelihood weighting and joint projections are 
possible as the physics of the relationships between variables (temperature and precipitation for example) are 
preserved through the link to the model parameter space. The implementation of such techniques is however a 
challenge involving techniques such as emulators which approximate the behaviour of the full climate model given 
a set of input parameters, as is the estimation of structural uncertainty not accounted for by parameter 
perturbations (Murphy et al., 2007; Murphy et al., 2009). 
 
 

 
 
Box 3.1, Figure 1. Equilibrium probability density functions for winter surface temperature change for Northern 
Europe following a doubling of the atmospheric CO2 concentration. The green histogram (labelled QUMP) is 
calculated from the temperature difference between 2 x CO2 and 1 x CO2 equilibrium simulations with 280 versions 
of HadSM3. The red curve (labelled prior) is obtained from a much larger sample of responses of the HadSM3 
model constructed using a statistical emulator and is the prior distribution for this climate variable. The blue curve 
(labelled weighted prior) shows the effect of applying observational constraints to the prior distribution. The 
asterisks show the positions of the best emulated values of the CMIP3 multi-model members and the arrows 
quantify the discrepancy between these best emulations and the actual multi-model responses. These 
discrepancies are used to shift the HadSM3 weighted prior distribution, and also broaden the final posterior 
distribution (black curve). Tick marks on the x-axis indicate the response of the CMIP3 slab models used in the 
discrepancy calculation. From Harris et al. (2010).  
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the spread of projections (see Box 3.2). If significant ad-
vancements are made in identifying such useful relation-
ships, they may provide a pathway for attempting to 
quantify the uncertainty in individual processes and pro-
jections.  
 
No general all-purpose metric (either single or multi-
parameter) has been found that unambiguously identi-
fies a ‘best’ model; multiple studies have shown that dif-
ferent metrics produce different rankings of models 
(e.g., Gleckler et al., 2008). A realistic representation of 
processes, especially those related to feedbacks in the 
climate system, is linked to the credibility of model pro-
jections and thus could form the basis for performance 
metrics designed to gauge projection reliability. The par-
ticipants of the Expert Meeting recommend consideration 
of the following points for both scientific papers and 
IPCC assessments: 
 
• Process-based performance metrics might be de-

rived from the analysis of multi-model simulations 
and/or from process studies performed in projects 
that complement CMIP (e.g., from detailed evalua-
tion and analysis of physical processes and feed-
backs carried out in a single column modelling 
framework by the Cloud Feedback Model Intercom-
parison Project (CFMIP) or the Global Energy and 
Water Cycle Experiment Cloud Systems Studies 
(GEWEX GCSS)). 

• Researchers are encouraged to consider the differ-
ent standardized model performance metrics cur-
rently being developed (e.g., WCRP’s Working 
Group on Numerical Experimentation (WGNE) / 
Working Group on Coupled Modelling (WGCM) 
metrics panel, El Niño Southern Oscillation (ENSO) 
metrics activity, Climate Variability and Predictability 
(CLIVAR) decadal variability metrics activity, the 
European Commission’s ENSEMBLES project, Chem-
istry-Climate Model Validation activity (CCMVal)). 
These metrics should be considered for assembly in 
a central repository. 

 
• A performance metric is most powerful if it is rela-

tively simple but statistically robust, if the results are 
not strongly dependent on the detailed specifications 
of the metric and other choices external to the 
model (e.g., the forcing) and if the results can be 
understood in terms of known processes (e.g., 
Frame et al., 2006). There are however few in-
stances of diagnostics and performance metrics in 
the literature where the large intermodel variations 
in the past are well correlated with comparably large 
intermodel variations in the model projections (Hall 
and Qu, 2006; Eyring et al., 2007; Boe et al., 2009) 
and to date a set of diagnostics and performance 
metrics that can strongly reduce uncertainties in 
global climate sensitivity has yet to be identified (see 
Box 3.2).  

Box 3.2: Examples of Model Evaluation Through Relationships Between Present-Day Observables 
and Projected Future Changes 

 
Correlations between model simulated historical trends, variability or the current mean climate state (being used 
frequently for model evaluation) on the one hand, and future projections for observable climate variables on the 
other hand, are often predominantly weak. For example, the climate response in the 21st century does not seem 
to depend in an obvious way on the simulated pattern of current temperature (Knutti et al., 2010). This may be 
partly because temperature observations are already used in the process of model calibration, but also because 
models simulate similar temperature patterns and changes for different reasons. While relationships across multi-
ple models between the mean climate state and predicted changes are often weak, there is evidence in models 
and strong physical grounds for believing that the amplitudes of the large-scale temperature response to green-
house gas and aerosol forcing within one model in the past represent a robust guide to their likely amplitudes in 
the future. Such relations are used to produce probabilistic temperature projections by relating past greenhouse 
gas attributable warming to warming over the next decades (Allen et al., 2000; Forest et al., 2002; Frame et al., 
2006; Stott et al., 2006). The comparison of multi-model ensembles with forecast ranges from such fingerprint 
scaling methods, observationally-constrained forecasts based on intermediate-complexity models or comprehen-
sively perturbed physics experiments is an important step in assessing the reliability of the ensemble spread as a 
measure of forecast uncertainty.  
 
An alternative assessment of model performance is the examination of the representation of key climate feedback 
processes on various spatial and temporal scales (e.g., monthly, annual, decadal, centennial). There are, however, 
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only few instances in the literature where the large intermodel variations in the past are well correlated with com-
parably large intermodel variations in the model projections. 
 
Hall and Qu (2006) used the current seasonal cycle to constrain snow albedo feedback in future climate change. 
They found that the large intermodel variations in the seasonal cycle of the albedo feedback are strongly correlated 
with comparably large intermodel variations in albedo feedback strength on climate change timescales (Box 3.2, 
Figure 1). Models mostly fall outside the range of the estimate derived from the observed seasonal cycle, 
suggesting that many models have an unrealistic snow albedo feedback. Because of the tight correlation between 
simulated feedback strength in the seasonal cycle and climate change, eliminating the model errors in the 
seasonal cycle should lead to a reduction in the spread of albedo feedback strength in climate change. A 
performance metric based on this diagnostic could potentially be of value to narrow the range of climate 
projections in a weighted multi-model mean. 
 
Other examples include a relation between the seasonal cycle in temperature and climate sensitivity (Knutti et al., 
2006) or the relation between past and future Arctic sea ice decline (Boe et al., 2009). Such relations across 
models are problematic if they occur by chance because the number of models is small, or if the correlation just 
reflects the simplicity of a parameterization common to many models rather than an intrinsic underlying process. 
More research of this kind is needed to fully explore the value of weighting model projections based on 
performance metrics showing strong relationships between present-day observables and projected future changes, 
or to use such relationships as transfer functions to produce projections from observations. It should be recognised 
however that attempts to constrain some key indicators of future change such as the climate sensitivity, have had 
to employ rather more complex algorithms in order to achieve strong correlations (Piani et al., 2005). 
 
 

 
 
Box 3.2, Figure 1. Scatter plot of simulated ratios between changes in surface albedo, Δαs , and changes in 
surface air temperature, ΔTs , during springtime, i.e., Δαs/ΔTs. These ratios are evaluated from transient climate 
change experiments with 17 AOGCMs (y-axis), and their seasonal cycle during the 20th century (x-axis). 
Specifically, the climate change Δαs/ΔTs values are the reduction in springtime surface albedo averaged over 
Northern Hemisphere continents between the 20th and 22nd centuries divided by the increase in surface air 
temperature in the region over the same time period. Seasonal cycle Δαs/ΔTs values are the difference between 
20th-century mean April and May αs averaged over Northern Hemisphere continents divided by the difference 
between April and May Ts averaged over the same area and time period. A least-squares fit regression line for the 
simulations (solid line) and the observed seasonal cycle Δαs/ΔTs value based on ISCCP and ERA40 reanalysis 
(dashed vertical line) are also shown. From Hall and Qu (2006). 
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• Observational uncertainty and the effects of internal 
variability should be taken into account in model as-
sessments. Uncertainties in the observations used 
for a metric should be sufficiently small to discrimi-
nate between models. Accounting for observational 
uncertainty can be done by including error estimates 
provided with the observational data set, or by using 
more than one data set to represent observations. 
We recognize however that many observational data 
sets do not supply formal error estimates and that 
modelers may not be best qualified for assessing 
observational errors. 

 
• Scientists are encouraged to use all available meth-

ods cutting across the database of model results, 
i.e., they should consider evaluating models on dif-
ferent base states, different spatial and temporal 
scales and different types of simulations. Specifi-
cally, paleoclimate simulations can provide inde-
pendent information for evaluating models, if the 
paleoclimate data has not been used in the model 
development process. Decadal prediction or evalua-
tion on even shorter timescales can provide insight, 
but differences in model setups, scenarios and sig-
nal to noise ratios must be taken into account. 

 
• A strong focus on specific performance metrics, in 

particular if they are based on single datasets, may 
lead to overconfidence and unjustified convergence, 
allow compensating errors in models to match cer-
tain benchmarks, and may prohibit sufficient diver-
sity of models and methods crucial to characterize 
model spread and understand differences across 
models.  

 
3.3 Recommendations for Model Selection, 

Averaging and Weighting 
Using a variety of performance metrics, a number of 
studies have shown that a multi-model average often 
out-performs any individual model compared to observa-
tions. This has been demonstrated for mean climate 
(Gleckler et al., 2008; Reichler and Kim, 2008), but 
there are also examples for detection and attribution 
(Zhang et al., 2007) and statistics of variability (Pierce et 
al., 2009). Some systematic biases (i.e., evident in most 
or all models) can be readily identified in multi-model 
averages (Knutti et al., 2010).  
 
There have been a number of attempts to identify more 
skillful vs. less skillful models with the goal to rank or 
weight models for climate change projections and for de-
tection and attribution (see Section 2). The participants 

of the Expert Meeting have identified the following 
points to be critical: 
 
• For a given class of models and experiments appro-

priate to a particular study, it is important to docu-
ment, as a first step, results from all models in the 
multi-model dataset, without ranking or weighting 
models. 

 
• It is problematic to regard the behavior of a 

weighted model ensemble as a probability density 
function (PDF). The range spanned by the models, 
the sampling within that range and the statistical in-
terpretation of the ensemble need to be considered 
(see Box 3.1). 

 
• Weighting models in an ensemble is not an appro-

priate strategy for some studies. The mean of mul-
tiple models may not even be a plausible concept 
and may not share the characteristics that all under-
lying models contain. A weighted or averaged en-
semble prediction may, for example, show de-
creased variability in the averaged variables relative 
to any of the contributing models if the variability 
minima and maxima are not collocated in time or 
space (Knutti et al., 2010). 

 
• If a ranking or weighting is applied, both the quality 

metric and the statistical framework used to con-
struct the ranking or weighting should be explicitly 
recognized. Examples of performance metrics that 
can be used for weighting are those that are likely 
to be important in determining future climate 
change (e.g., snow/ice albedo feedback, water va-
por feedback, cloud feedback, carbon cycle feed-
back, ENSO, greenhouse gas attributable warming; 
see Box 3.2). 

 
• Rankings or weightings could be used to select sub-

sets of models, and to produce alternative multi-
model statistics which can be compared to the origi-
nal multi-model ensemble in order to assess robust-
ness of the results with respect to assumptions in 
weighting. It is useful to test the statistical signifi-
cance of the difference between models based on a 
given metric, so to avoid ranking models that are in 
fact statistically indistinguishable due to uncertainty 
in the evaluation, uncertainty whose source could be 
both in the model and in the observed data. 

 
• There should be no minimum performance criteria 

for entry into the CMIP multi-model database. 
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Researchers may select a subset of models for a 
particular analysis but should document the reasons 
why. 

 
• Testing methods in perfect model settings (i.e., one 

model is treated as observations with complete cov-
erage and no observational uncertainty) is encour-
aged, e.g., withholding one member from a multi-
model or perturbed physics ensemble, and using a 
given weighting strategy and the remaining ensem-
ble members to predict the future climate simulated 
by the withheld model. If a weighting strategy does 
not perform better than an unweighted multi-model 
mean in a perfect-model setting, it should not be 
applied to the real world. 

 
• Model agreement is not necessarily an indication of 

likelihood. Confidence in a result may increase if 
multiple models agree, in particular if the models 
incorporate relevant processes in different ways, or 
if the processes that determine the result are well 
understood. But some features shared by many 
models are a result of the models making similar 
assumptions and simplifications (e.g., sea surface 
temperature biases in coastal upwelling zones, CO2 
fertilization of the terrestrial biosphere). That is, 
models may not constitute wholly independent 
estimates. In such cases, agreement might also in 
part reflect a level of shared process representation 
or calibration on particular datasets and does not 
necessarily imply higher confidence. 

 
3.4 Recommendations for Reproducibility 
To ensure the reproducibility of results, the following 
points should be considered: 
 
• All relevant climate model data provided by model-

ling groups should be made publicly available, e.g., 
at PCMDI or through the Earth System Grid (ESG, 
pointers from PCMDI website); observed datasets 
should also be made readily available, e.g., linked 
through the PCMDI website. Multi-model derived 
quantities (e.g., synthetic Microwave Sounding Unit 
(MSU) temperatures, post-processed ocean data, 
diagnostics of modes of variability) could be provided 
in a central repository.  

 
• Algorithms need to be documented in sufficient 

detail to ensure reproducibility and to be available 
on request. Providing code is encouraged, but there 
was no consensus among all participants about 
whether to recommend providing all code to a public 

repository. Arguments for providing code are full 
transparency of the analysis and that discrepancies 
and errors may be easier to identify. Arguments 
against making it mandatory to provide code are the 
fact that an independent verification of a method 
should redo the full analysis in order to avoid 
propagation of errors, and the lack of resources and 
infrastructure required to support such central 
repositories.  

 
3.5 Recommendations for Regional Assessments 
Most of the points discussed in previous sections apply 
also to regional and impacts studies. The participants of 
the meeting highlight the following recommendations for 
regional assessments, noting that many points apply to 
global projections as well. Although there is some repeti-
tion, this reflects that independent breakout groups at 
the Expert Meeting came up with similar recommenda-
tions: 
 
• The following four factors should be considered in 

assessing the likely future climate change in a 
region (Christensen et al., 2007): historical change, 
process change (e.g. changes in the driving 
circulation), global climate change projected by 
GCMs and downscaled projected change. Particular 
climate projections should be assessed against the 
broader context of multiple sources (e.g., regional 
climate models, statistical downscaling) of regional 
information on climate change (including multi-
model global simulations), recognizing that real and 
apparent contradictions may exist between 
information sources which need physical under-
standing. Consistency and comprehensiveness of the 
physical and dynamical basis of the projected 
climate response across models and methods should 
be evaluated. 

 
• It should be recognized that additional forcings and 

feedbacks, which may not be fully represented in 
global models, may be important for regional 
climate change (e.g., land use change and the 
influence of atmospheric pollutants). 

 
• When quantitative information is limited or missing, 

assessments may provide narratives of climate 
projections (storylines, quantitative or qualitative 
descriptions of illustrative possible realizations of 
climate change) in addition or as an alternative to 
maps, averages, ranges, scatter plots or formal 
statistical frameworks for the representation of 
uncertainty.  
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• Limits to the information content of climate model 
output for regional projections need to be communi-
cated more clearly. The relative importance of un-
certainties typically increase for small scales and im-
pact relevant quantities due to limitations in model 
resolution, local feedbacks and forcings, low signal 
to noise ratio of observed trends, and possibly other 
confounding factors relevant for local impacts. Scien-
tific papers and IPCC assessments should clearly 
identify these limitations.  

 
• Impact assessments are made for multiple reasons, 

using different methodological approaches. Depend-
ing on purpose, some impact studies sample the 
uncertainty space more thoroughly than others. 
Some process or sensitivity studies may legitimately 
reach a specific conclusion using a single global cli-
mate model or downscaled product. For policy-
relevant impact studies it is desirable to sample the 
uncertainty space by evaluating global and regional 
climate model ensembles and downscaling tech-
niques. Multiple lines of evidence should always be 
considered. 

 
• In particular for regional applications, some climate 

models may not be considered due to their poor 
performance for some regional metric or relevant 
process (e.g., for an Arctic climate impact assess-
ment models need to appropriately simulate re-
gional sea-ice extent). However, there are no simple 
rules or criteria to define this distinction, however. 
Whether or not a particular set of models should be 
considered is a different research-specific question in 
every special case. Selection criteria for model as-
sessment should be based, among other factors, on 
availability of specific parameters, spatial and tem-
poral resolution within the model and so need to be 
made transparent. 

 
• The usefulness and applicability of downscaling 

methods strongly depends on the purpose of the 
assessment (e.g., for the analysis of extreme events 
or assessments in complex terrain). If only a 
subsample of the available global climate model 

uncertainty space is sampled for the downscaling, 
this should be stated explicitly. 

 
• When comparing different impact assessments, 

IPCC authors need to carefully consider the different 
assumptions, climate and socio-economic baselines, 
time horizons and emission scenarios used. Many 
impact studies are affected by the relative similarity 
between different emission scenarios in the near 
term. Consideration of impact assessments based 
on the earlier emission scenarios (IPCC Special Re-
port on Emission Scenarios, SRES) in the light of the 
new scenario structure (Representative Concentra-
tion Pathways, RCP) represents a considerable chal-
lenge. The length of time period considered in the 
assessment studies can significantly affect results.  

 
3.6 Considerations for the WGI Atlas of Global 

and Regional Climate Projections 
The WGI Atlas of Global and Regional Climate Projec-
tions in IPCC AR5 is intended to provide comprehensive 
information on a selected range of climate variables 
(e.g., temperature and precipitation) for a few selected 
time horizons for all regions and, to the extent possible, 
for the four basic RCP emission scenarios. All the infor-
mation used in the Atlas will be based on material as-
sessed in WGI Chapters 11, 12 or 14 (see http://www. 
ipcc-wg1.unibe.ch/AR5/chapteroutline.html). 
 
There may, however, be disagreement between the 
downscaling literature and the content of the Atlas 
based on GCMs and this should be explained and re-
solved as far as possible. The limitations to the interpre-
tation of the Atlas material should be explicit and promi-
nently presented ahead of the projections themselves. 
 
Options for information from multi-model simulations 
could include medians, percentile ranges of model out-
puts, scatter plots of temperature, precipitation and 
other variables, regions of high/low confidence, changes 
in variability and extremes, stability of teleconnections, 
decadal time-slices, and weighted and unweighted rep-
resentations of any of the above. The information could 
include CMIP5 as well as CMIP3 simulations. 



Good Practice Guidance Paper 

IPCC Expert Meeting on Multi Model Evaluation - 12 

References  
Allen, M.R., P.A. Stott, J.F.B. Mitchell, R. Schnur, and 

T.L. Delworth, 2000: Quantifying the uncertainty 
in forecasts of anthropogenic climate change. 
Nature, 407, 617-620. 

Annan, J.D., and J.C. Hargreaves, 2010: Reliability of the 
CMIP3 ensemble. Geophys. Res. Lett., 37, 
doi:10.1029/2009gl041994. 

Benestad, R.E., 2005: Climate change scenarios for 
northern Europe from multi-model IPCC AR4 
climate simulations. Geophys. Res. Lett., 32, 
doi:10.1029/2005gl023401. 

Boe, J.L., A. Hall, and X. Qu, 2009: September sea-ice 
cover in the Arctic Ocean projected to vanish by 
2100. Nature Geoscience, 2, 341-343. 

Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. 
Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, 
R. Laprise, V. Magana Rueda, L. Mearns, C.G. 
Menendez, J. Raisanen, A. Rinke, A. Sarr, and 
P. Whetton, 2007: Regional Climate Projections. 
In: Climate Change 2007: The Physical Science 
Basis. Contribution of Working Group I to the 
Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, [S. Solomon, 
D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 
Averyt, M. Tignor, and H.L. Miller, (eds.)], Cam-
bridge University Press, Cambridge, United 
Kingdom, and New York, NY USA, 847-845. 

Connolley, W.M., and T.J. Bracegirdle, 2007: An 
Antarctic assessment of IPCC AR4 coupled 
models. Geophys. Res. Lett., 34, doi:10.1029/ 
2007gl031648. 

Eyring, V., D.W. Waugh, G.E. Bodeker, E. Cordero, H. 
Akiyoshi, J. Austin, S.R. Beagley, B.A. Boville, 
P. Braesicke, C. Bruhl, N. Butchart, M.P. 
Chipperfield, M. Dameris, R. Deckert, M. 
Deushi, S.M. Frith, R.R. Garcia, A. Gettelman, 
M.A. Giorgetta, D.E. Kinnison, E. Mancini, E. 
Manzini, D.R. Marsh, S. Matthes, T. 
Nagashima, P.A. Newman, J.E. Nielsen, S. 
Pawson, G. Pitari, D.A. Plummer, E. Rozanov, 
M. Schraner, J.F. Scinocca, K. Semeniuk, T.G. 
Shepherd, K. Shibata, B. Steil, R.S. Stolarski, 
W. Tian, and M. Yoshiki, 2007: Multimodel 
projections of stratospheric ozone in the 21st 
century. J. Geophys. Res., 112, D16303, 
doi:10.1029/2006JD008332. 

Forest, C.E., P.H. Stone, A.P. Sokolov, M.R. Allen, and 
M.D. Webster, 2002: Quantifying uncertainties 
in climate system properties with the use of 
recent climate observations. Science, 295, 113-
117. 

 
Frame, D.J., D.A. Stone, P.A. Stott, and M.R. Allen, 

2006: Alternatives to stabilization scenarios. 
Geophys. Res. Lett., 33, doi:10.1029/2006 
GL025801. 

Furrer, R., R. Knutti, S.R. Sain, D.W. Nychka, and G.A. 
Meehl, 2007: Spatial patterns of probabilistic 
temperature change projections from a multi-
variate Bayesian analysis. Geophys. Res. Lett., 
34, L06711, doi:10.1029/2006GL027754. 

Giorgi, F., and L.O. Mearns, 2003: Probability of regional 
climate change based on the Reliability Ensem-
ble Averaging (REA) method. Geophys. Res. 
Lett., 30, 1629, doi:10.1029/2003GL 017130. 

Gleckler, P.J., K.E. Taylor, and C. Doutriaux, 2008: 
Performance metrics for climate models. J. 
Geophys. Res., 113, D06104, doi:10.1029/ 
2007JD008972. 

Greene, A.M., L. Goddard, and U. Lall, 2006: 
Probabilistic multimodel regional temperature 
change projections. J. Clim., 19, 4326-4346. 

Hall, A., and X. Qu, 2006: Using the current seasonal 
cycle to constrain snow albedo feedback in 
future climate change. Geophys. Res. Lett., 33, 
L03502, doi:10.1029/2005GL025127. 

Harris, G.R., M. Collins, D.M.H. Sexton, J.M. Murphy, 
and B.B.B. Booth, 2010: Probabilistic Projec-
tions for 21st Century European Climate. Nat. 
Haz. and Earth Sys. Sci., (submitted). 

IPCC, 2007: Climate Change 2007: The Physical Science 
Basis. Contribution of Working Group I to the 
Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change 
[Solomon, S. D. Qin, M. Manning, Z. Chen, M. 
Marquis, K.B. Averyt, M. Tignor, and H.L. Miller 
(eds.)]. Cambridge University Press, Cambridge, 
United Kingdom and New York, NY, USA, 
996pp. 

Jackson, C.S., M.K. Sen, G. Huerta, Y. Deng, and K.P. 
Bowman, 2008: Error Reduction and Conver-
gence in Climate Prediction. J. Clim., 21, 6698-
6709. 

Knutti, R., 2008: Should we believe model predictions of 
future climate change? Phil. Trans. Royal Soc. 
A, 366, 4647-4664. 

Knutti, R., 2010: The end of model democracy? Clim. 
Change, published online, doi:10.1007/s10584-
010-9800-2 (in press). 

Knutti, R., G.A. Meehl, M.R. Allen, and D.A. Stainforth, 
2006: Constraining climate sensitivity from the 
seasonal cycle in surface temperature. J. Clim., 
19, 4224-4233. 



Good Practice Guidance Paper 

IPCC Expert Meeting on Multi Model Evaluation - 13 

Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. 
Meehl, 2010: Challenges in combining projec-
tions from multiple models. J. Clim., 23, 2739-
2756, doi: 10.1175/2009JCLI3361.1. 

Lopez, A., C. Tebaldi, M. New, D.A. Stainforth, M.R. Al-
len, and J.A. Kettleborough, 2006: Two ap-
proaches to quantifying uncertainty in global 
temperature changes. J. Clim., 19, 4785-4796. 

Mearns, L.O., W.J. Gutowski, R. Jones, L.-Y. Leung, S. 
McGinnis, A.M.B. Nunes, and Y. Qian, 2009: A 
regional climate change assessment program 
for North America. EOS, 90, 311-312. 

Murphy, J., D. Sexton, G. Jenkins, P. Boorman, B. 
Booth, K. Brown, R. Clark, M. Collins, G. Har-
ris, and E. Kendon, 2009: Climate change pro-
jections, ISBN 978-1-906360-02-3. 

Murphy, J. M., B.B.B. Booth, M. Collins, G.R. Harris, 
D.M.H. Sexton, and M.J. Webb, 2007: A meth-
odology for probabilistic predictions of regional 
climate change from perturbed physics ensem-
bles. Phil. Trans. Royal Soc. A, 365, 1993-
2028. 

Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. 
McAneney, 2007: Evaluation of the AR4 climate 
models' simulated daily maximum temperature, 
minimum temperature, and precipitation over 
Australia using probability density functions. J. 
Clim., 20, 4356-4376. 

Piani, C., D.J. Frame, D.A. Stainforth, and M.R. Allen, 
2005: Constraints on climate change from a 
multi-thousand member ensemble of simula-
tions. Geophys. Res. Lett., 32, L23825. 

Pierce, D.W., T.P. Barnett, B.D. Santer, and P.J. Gleck-
ler, 2009: Selecting global climate models for 
regional climate change studies. Proc. Natl. 
Acad. Sci. USA, 106, 8441-8446. 

Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fiche-
fet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. 
Srinivasan, R. J. Stouffer, A. Sumi, and K. Tay-
lor, 2007: Climate Models and Their Evaluation. 
In: Climate Change 2007: The Physical Science 
Basis. Contribution of Working Group I to the 
Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, [S. Solomon, 
D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 
Averyt, M. Tignor, and H.L. Miller, (eds.)], Cam-
bridge University Press, Cambridge, United 
Kingdom and New York, NY, USA, 589-662. 

Reichler, T., and J. Kim, 2008: How well do coupled 
models simulate today's climate? Bull. Am. 
Met. Soc., 89, 303-311. 

Rougier, J., 2007: Probabilistic inference for future cli-
mate using an ensemble of climate model 
evaluations. Clim. Change, 81, 247-264. 

Santer, B.D., K.E. Taylor, P.J. Gleckler, C. Bonfils, T.P. 
Barnett, D.W. Pierce, T.M.L. Wigley, C. Mears, 
F.J. Wentz, W. Bruggemann, N.P. Gillett, S.A. 
Klein, S. Solomon, P.A. Stott, and M.F. 
Wehner, 2009: Incorporating model quality in-
formation in climate change detection and attri-
bution studies. Proc. Natl. Acad. Sci. USA, 106, 
14778-14783. 

Schmittner, A., M. Latif, and B. Schneider, 2005: Model 
projections of the North Atlantic thermohaline 
circulation for the 21st century assessed by ob-
servations. Geophys. Res. Lett., 32, L23710. 

Smith, R.L., C. Tebaldi, D.W. Nychka, and L.O. Mearns, 
2009: Bayesian modeling of uncertainty in en-
sembles of climate models. J. Am. Stat. Assoc., 
104, 97-116, doi:10.1198/jasa.2009. 0007. 

Stephenson, D.B., C.A.S. Coelho, F.J. Doblas-Reyes, and 
M. Balmaseda, 2005: Forecast assimilation: a 
unified framework for the combination of multi-
model weather and climate predictions. Tellus 
A, 57, 253-264. 

Stott, P.A., J.A. Kettleborough, and M.R. Allen, 2006: 
Uncertainty in continental-scale temperature 
predictions. Geophys. Res. Lett., 33, L02708. 

Tebaldi, C., and R. Knutti, 2007: The use of the multi-
model ensemble in probabilistic climate projec-
tions. Phil. Trans. Royal Soc. A, 365, 2053-
2075. 

Tebaldi, C., R.W. Smith, D. Nychka, and L.O. Mearns, 
2005: Quantifying uncertainty in projections of 
regional climate change: A Bayesian approach 
to the analysis of multi-model ensembles. J. 
Clim., 18, 1524-1540. 

Waugh, D.W., and V. Eyring, 2008: Quantitative per-
formance metrics for stratospheric-resolving 
chemistry-climate models. Atm. Chem. Phys., 
8, 5699-5713. 

Zhang, X.B., F.W. Zwiers, G.C. Hegerl, F.H. Lambert, 
N.P. Gillett, S. Solomon, P.A. Stott, and T. No-
zawa, 2007: Detection of human influence on 
twentieth-century precipitation trends. Nature, 
448, 461-466. 

 


