
ABSTRACT

Some modifications on the classical radiation damage simulation model developed by Jam

and Lidiard are here presented. They simulate the effect on radiation damage of gradients of

dislocation concentration, impurity concentrations, and radiation dose rate. With these

modifications the heterogeneous colour distribution due to incipient colloid development

observed in the microstructures of irradiated salt samples can be explained

The primary defects formed during irradiation of NaC1 are F— and H—centres. These

complementary defect centres can, however, easily recombine, restoring the NaC1 lattice. To

produce permanent radiation damage these primary point defects have to be kept from

recombining. In a perfect lattice, however, stabilizing point defects would be very difficult.

Following Hobbs [1972], if dislocations are present, H—centres can be stabilized via a mechanism

in which two H—centres “dig out” a NaC1 ion pair from its regular position and form a Cl2

molecule. The NaCI ion pair moves to the extra plain of the dislocation. Hobbs et al. [1973] also

observed that during irradiation perfect edge dislocation loops in the [011] planes are formed.

According to the mechanism described above, H—centres can be stabilized in places above and

below (nearby and within the projection of) these dislocation ioops. How the nucleation of these

dislocation loops proceeds has however not been clarified. To circumvent this problem, in the

theoretical models describing the radiation damage formation, it was either assumed that the

dislocation loops already existed [Jam and Lidiard, 1977] or that other H—centre trapping
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distortions (together with the H—centres) collapsed into dislocation ioop structures [Semen et al.,

1992; Soppe, 1993]. Hobbs [1976] considered the distortion field around Na~ lattice positions

substitutionally occupied by divalent cation impurities as the most likely places for the nucleation

of dislocation loops.

All models and theories assume the crystals to be homogenous entities since they

disregard spatial distributions and perform calculations using only time—dependant concentration

values. The general form of the mass balance of a given defect X, however, is:

r = source - + D v2C
x x x x

In the theoretical models developed so far it is assumed that the salt is homogeneous and

that there are no gradients in the concentrations of the various defects; i.e. the last term of (1) is

zero. In the Jain—Lidjard model thus:

QF source... K + 41rrcCcD,~je) (2)

i.e. the production rate of F—centres (QF50~) is equal to their direct production rate (K) plus that

of their evaporation from colloids (47rr~C~Dpc(e)). On the other side, the F—centres concentration

in solution diminishes (by an amount Q~L) through recombination with H—centres, trapping at

dislocation lines, recombination with Cl2 molecules, and precipitation in the form of colloids.

This is respectively represented by each term in (3)

QF~ = K2CFH + ZFPPFF + + 41tr~C~D~ (3)

Similar expressions can be written for the H—centres, except that, for these centres, it is

assumed that their precipitates in the form of Cl2 are stable and therefore no H—centra evaporate

from them. Taking into account this assumption the production rate of H centres is:

QH source_.. K (4)

And the rate at which H—centres are taken out from the solution, which depends on similar

processes as that of the F centres, is expressed as in (5)

centres:

QH~nk = K2CFH + ZHPPHCH + 4ItrCCCDI,cH (5)

Then lain and Lidiard define the rate of colloid production as the rate of sinking in of F

,-~ source —

— 4IrTCCCDFCF (6)

And the rate of colloid annihilation as the evaporatiOn rate of F centres from colloids plus

the rate of H—centre recombination with colloids:

4it TCCCDF(CF(e) + (7)

As stated above, in the equations written by lain and Lidiard it is assumed that the salt is

homogeneous and that there is no variation in concentration of defects, nor gradients driving

diffusion. However, something else than just random diffusion and random fixation of H—centres

near randomly distributed impurities has to be envisaged if radiation damage has to be explained.

Moreover randomness can never explain the heterogeneous colour distribution observed in

irradiated samples.

In natural rock salts, intra en intercrystalline heterogeneities, all with extensions larger

than some crystal lattice cells are always present and can be assumed to create gradients in defect

concentrations which would drive diffusion in a preferent direction. Reinforcement of the

concentration of a given colour centre (H— or F—centre) could then take place, but, since both

(complementary) defects could be driven to diffuse in the same direction, annihilation could as

at (1)
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Figure 1

Figure 2

Micrograph ofa natural rock salt sample irradiated up to 2.6 MGy at 15 kGy/h

and 100 °C. The black structure crossing the micrograph from top—right to

bottom—left is a grain boundary void. Observe the colourless rim limited by the

intense blue rim. The other colloid decorated structures are cellularpatterns and

incipient subgrain boundaries. Magnification 338 X

Micrograph ofapure undeformed single crystal ofNaCZ irradiated up to 4 MGy

at 15 kGy/h and 100 °C. Observe the dark colloid decorated, circular crystal

outer surface. The outermost surface is too thin to be observed in thisphotograph

but can be observed in Fig. 3. Magnification 34X
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well be the result. Both constructive and destructive results have been observed in the colour

distributiOn. We try to obtain the “calculated” equivalents of the damage heterogeneity observed

in the experiments through modelling the heterogeneities previous to the irradiation and the effect

we believe they have on point defect dynamics. If the models reproduce the “heterogeneities” they

would constitute a good test on our radiation damage development understanding.

As a basis we will use expression (1) for the mass balance of a defect X. Notice that in (1)

a variation on the defect gradient ( DXV2CX) is introduced which is never taken into account in

the Jain—Lidiard model.

2. EXPERIMENTAL OBSERVATIONS

Intraciystalline distribution of damage is not homogeneous, but controlled by dislocation

substructures. This is observed both on natural samples and on pure undefonried single crystals

(Harshaw). It has been observed [Donker and Garcia Celrna, 1995] that rock salts do not contain

more stored energy than Harshaw crystals irradiated simultaneously with them and under the

same conditions. This contradiction with theoretical expectations is attributed, amongst other

causes, to the fact that natural rock salts posses a more extense network of exterior crystal surfaces

(sample boundaries, grain and subgrain boundaries, fractures) per volume of sample than the

Harshaw crystals do, a higher density of exterior crystal surfaces would enhance creep due to the

development of defect gradients in the crystals. The creep will take place associated with anneal

even when the original heterogeneities will ease nucleation of radiation damage defects.

Incipient colloid development takes place near grain boundaries but at a distance from

them. The grain boundary itself is colloid—free and at some distance to the exterior surface

colloids appear constituting a dark blue line from which on and towards the centre of the crystal

the blue colour becomes lighter (Fig. 1—3).

At a lower scale, the blue colour produced by the colloids is observed to display patterns

which can be recognized as dislocation substructures. Most of these substructures were not

present before irradiation and therefore are produced by the irradiation itself. The substructures

grade from incipient slip bands (Fig. 3) , to well developed cross slip structures, subgrain
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Figure 3

Figure 4
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Blow up of the dark rim ofFig.2. There is a colourless outer rim of the crystal

which is seen as a less blue blurred rim at this magnification. The direction of

incipient slip traces (ST) is indicated. The blue rim is made up of these incipient

slip traces. Magn~fication 1343 X~

Micrograph ofa pure undeformed NaCl crystal irradiated up to 24 MGy at 15

kGy/h and 100 °C. The d~fferent darkness ofparts of the crystal are a thin

section preparation art~fact. The colourless (white) lines network is a subgrain

boundary network developed during irradiation. Magn~/Ication 4 X
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Figure 5 Micrograph ofa natural rock salt sample irradiated up to 2.6 MGy at 15 kGy/h

and 100 °C. Subgrain boundaries developing by climb of colloid decorated cross

slip structures (cellularpatterns), while near the polyhalite (F) boundary with the

halite som of the subgrain boundaries already constitute a preferred diffusion

path (incipient discolouration can be observed). Magnification 338X
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boundaries produced by dislocation climb processes (Fig. 4) and new grain boundaries of high

surface equilibrium produced by polygonization due to further progression of this creep [Garcia

Celma and Donlcer, 1994]. Notice that since we observe them because they are blue, this means

that when the dislocation migrate to constitute the various different arrangements the colloids are

either destroyed and re—nucleated or migrate together with the creep structures.

Those substructures which are material discontinuities are observed as a white rim limited

by a blue rim with the same structure as observed for incipient colloid development (see Fig. 5,6).

If the material discontinueties were already present in the sample at the beginning of the

irradiation it can be assumed that colloids did not develop at the exterior surface as is the case

with Harshaw single crystals. However, if they are produced by creep during irradiation by

dislocation wall development (e.g. subgrain boundaries) (Fig. 4) it has to be assumed that

bleaching took place since dislocation lines are first blue. An extreme example of this colloid

distribution was obtained in the Brine Migration Test [Gies et al.,1994] (see Fig. 7).

3. HETEROGENEOUS DISLOCATION DISTRIBUTION

Natural rocks compact by adaption to the strain (deformation) produced by the overlying

pack of rocks. When stress results in plastic deformation, dislocations and their arrangements are

the lattice expression of the strain undergone by the rock. Dislocations in deformed materials

mostly display a core—mantle distribution. This means that the mantles of the crystals protect their

inner parts (the cores) from the action of externally applied deformation through plastically

adapting themselves to the deformation, and thus accumulate dislocations.

Therefore, the dislocation density at the mantle is many times bigger than at the core of

any crystal. Lets thus assume a spherical grain with radius R where the distribution of the

dislocations is described by:

pd(T,t) ~, X(R -r) (8)

Since we may assume that the concentration of the H centres is steady (ôcH/ôt 0), the
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Figure 6

Figure 7

Micrograph ofa natural rock salt sample irradiated up to 4 MGy at 15 kGy/h and

100 °C. Well developed subgrain boundaries ending at a grain boundary, all

bleached by preferred diffusion of radiation damage defects towards the grain

boundary void. Magnification 338 X

Micrograph ofa natural rock salt sample from the Brine Migration Test (in situ

irradiation experiment at the Asse Mine). Observe the very exaggerated white

(colourless) rims near the grain boundaries and the blue rims fading towards the

grain cores. Magnification 7X
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Calculated colloid fraction as a function of distance from the grain core for a

spherical grain of radius i03 cm, assuming a heterogeneous dislocation

distribution (see text). Dose rate 100 kGylh, total dose 833 MGy

contribution of the diffusion of H centres is easy to determine if we also assume that it is a second

order effect. We can then write:

where A = K2cF + 4~trCCCDH, and B = zflDfl, equation (9) then gives:

V2CH =

(9)

(10)
IcKBp~(r,t)

+1c -

21cBp~(r,t)

A + Bpd(r,t)

kappa = 10

kappa=JOO

kappa= 1000 /

I
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The diffusion term for the F—centres is more difficult to consider because we do not have any

analytical expression for their concentration as a function of crystal radius and time. We have

tried some approximations but they all lead to difficulties in integrating 8cF/8t. If the diffusion

term for the F—centres is not considered and the heterogeneities are only expressed using (8), the

differential equations for c~ and c~ could be integrated. The results of the model for three different

values of K are represented in Fig. 8. The value assumed for the dose rate K was 100 kGy/h, and

the total dose 833 MGy. It can be seen that in these simulations the colloid fraction follows more

or less the behaviour of the dislocation line density: a maximum concentration at the grain

boundary and an exponential decrease in the direction of the grain core.

4. THE EFFECT OF THE GRAIN BOUNDARY

In the previous chapter we have shown that we can explain that regions of the crystals

where many dislocations are present develop more radiation damage than regions with lower

dislocation densities. In natural rock salts the highest dislocation densities are expected at the

grain boundaries. However, the first place where colloids develop in natural samples is not at but

near the grain boundaries and in Harshaw crystals near the crystal boundary. The crystal/grain

boundaries themselves tend to be devoid of colloids while the colloids are observed in the optical

microscope as accumulating at a given distance between 2 and 7 microns of the free surface of

the crystal/grain. Towards the crystal/grain interior the colloid concentration gra.dually

diminishes. See the micrographs in Fig. 1—3.

One of the most important differences with a perfect crystal (as assumed in the models)

displayed by the crystals used in our experiments is that the real crystals are finite and that they

have exterior surfaces. The exterior surfaces can be described as an accumulation of dislocations.

To simulate the grain boundary we considered that there are three dislocation lines per unit cell

at the exterior surface of the grain, and that the dislocation density is many times bigger at the

mantle than at the core of an halite crystal. We have approximated this by the following

expression:

p = p 1 e -K(R - r) + (11)

in which r is the distance from the grain boundary, p1 is the dislocation density at the surface and

p4 is the dislocation density in the bulk of the crystal. Notice that this expression is very similar

to Eq. (8). The main difference, however is that the dislocation density at the surface is now many

orders of magnitude higher than in (8)

Using Eq. (11) the Jain—Lidiard model gives the colloidal distribution displayed in Fig. 9.

In Fig. 9 the dose rate K= 100 kGy/h; total dose simulated was 833 MGy, K = io~ cm’, and

p1 = 1012 ~-2• From Fig. 9 it can be observed that the colloid distribution predicted by the model

agrees with the experimental observations, i.e. the model predicts that a maximum colloid

concentration will occur at a few microns from the surface of the crystal/grain and that the surface

itself will be devoid of colloids.

Figure 9 Calculated colloid fraction as a function of distance from the grain core for a

spherical grain ofradius i0~ cm, assuming a dislocation distribution according

to Eq. 11 (see text). Dose rate 100 kGy/h~, total dose 833 MGy, p1 = 1012 cm2 and

K = io~ cnf1.
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Figure 10 Calculated colloid fraction as a function of distance from the grain core for a

spherical grain ofradius 10~ cm; assuming a heterogeneous impurity distribution

(see text). Dose rate 100 kGy/h, total dose 833 MGy.
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~=iO~ cm’, but further inspection of them learns that all curves have this same behaviour. The

cause of this is that V2Cff is divergent for r = 0 because c~(0) is not equal to zero.

In Fig. 11 the results of simulations only differing from the previous in that they disregard

the effect of diffusion have been presented. Two important differences with Fig. 10 can be

observed in Fig. 11, first the colloidal fraction is systematically much lower (about a factor 2) than

in Fig. 10; and second the U—form character of the curves has disappeared. We can see that the

diffusion—term in this case is very important and cannot be disregarded.

6. THE REPOSiTORY.

On top of all the previously considered heterogeneities, there is as well an important

gradient at the scale of a repository, e.g. the gradient resulting from the absorption of the gamma

radiation by salt near the containers. This can be modelled as a gradient in the dose rate.

At the scale of the salt grains the dose rate gradient as a consequence of the sensitivity to

“stopping rate” can be disregarded. However the question is whether the gradient which in a

repository would develop radially away from the containers would significantly contribute to the

diffusion . It is easy to observe that this is not the case. Lets assume that the dose rate can be

described with:

K(d) K0e ~ (16)

where d is the distance to the container. This leads to:

2 12Vc oc_1CCF and
4 (17)

V2CH °C K~C~

Now ic is of the order of magnitude of 1 cm’ and DFcF and DficH lie between io-’~ and

iO-’~ ~ for T 100 °C. If we now know that the dose rate of 10 kGylh corresponds with

0.0-

106 iO-5 iD’4 io-3
Distance (cm)

Figure 11 Calculated colloid fraction as a function of distance from the grain core for a

spherical grain ofradius 10-i cm; assuming a heterogeneous impurity distribution

but disregarding the effect ofdiffusion (see text). Dose rate 100 kGylh, total dose

833 MGy.
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5. HETEROGENEOUS IMPURITY DISTRIBUTION

CH =

c5(r) = e -K(R r)

K

K2cF + zHPDDH + DH4~nrCCC + KHcS(r)

(12)

(13)

The impurity distribution in secondary crystals, which contrary to the autigenic have

undergone some degree of recrystallization, can partially have controlled the mechanical

behaviour of the crystal during the processes subsequent to crystallization. On the other side, the

distribution of the impurities after a deformation process will be affected by deformation, e.g.

impurities will partially redistribute themselves by diffusion towards the distended parts of the

lattice which are dislocations and their arrangements.

whereC=K2cF+zHpdDH+Dfl4 irr~C~., and:D=KH.

CH =

K + DHV2cH

K2cF + ZHPDDH + + KHcS(r)
(15)

level.

then, the zero order steady state equation for the H—centres is:

What gives (see equation (10)):

V2CH =

During crystal growth, lattice impurities tend to be preferently segregated towards the

crystal exterior surfaces. Some crystals incorporate progressively higher concentrations of lattice

impurities as they become bigger, and some times even stop growing due to “poisoning” of the

growing surfaces by the impurities Moreover, in a closed system, a crystal growing from solution

is bound to incorporate more and more impurities while growing (due to the changes in the

solution concentration) until the exterior surface is “poisoned” and growth stops. In autigenic

crystals, therefore it is logical to expect higher impurity concentrations near the crystal

boundaries.

+K -

C + Dc~(r)
(14)

The first order steady state equation for the H—centres then becomes:

We were able to solve the “ordinary” equations for the F—centres (as determined by

equations (2) and (3)), and for the colloids (as determined by equations (5) and (6)) in

combination with these last expressed boundary conditions. The results for 4 values of x are

given in Fig. 10 for c50 = 106, K equal to 100 kGy/h, and a total dose of 833 MGy. Firstly we

can see that the colloidal fractions are in general higher than in the case considered for the

dislocations, this is the effect of the impurities in general. For K = iO~ cm~, cs(r) is almost zero

for r = 0 and we observe that the colloid fraction is also the same as that found for the

dislocations. Moreover, it can be seen that the curves have an U shape (This can best be seen for

Anyway, in rock forming minerals, impurities and dislocations have a tendency to fall

near (and within) each other’s sphere of influence, and to display gradients at grain and subgrain

lain en Lidiard did not consider the effects of lattice impurities on the production of

radiation damage. It can be assumed that certain impurities act as trapping environments for H

centres and thus provoke an enhanced colloid growth. This assumption leads to an extra

(negative) term in equation (5) : KBCSCH where c~ is the concentration of the impurities and KH

a reaction constant.

Lets assume, to ease our work, that the impurity concentration is stable and nonsaturable,

we will therefore not consider the development of H—dimers.

Assuming that the space dependence for the impurities in an spherical grain is equal to that

assumed for the dislocations so that:
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K = 1.667x108 s~ we can see that the contribution to diffusion is only relevant for very low j. SEINEN, ~i.c. GROOTE, J.R.W. WEERKAMP and H.W. DEN HARTOG, 1992: “Radiation

dose rates (or for very high temperatures). Under these situations, indeed, no colloid growth can Damage in NaC1: General Model ofNucleation and Aggregation Processes in Doped NaC1”,
Rad. Eff. Def. Solids 124,325—339.

take place, and thus we could conclude that in general the diffusion contribution as consequence

of a gradient in dose rate K can be disregarded as compared with the effect ofK itself. WJ. SOPPE, 1993: “Computer Simulation ofRadiation Damage in NaCI by using a Kinetic Rate
Reaction Model”, 3. Phys.: Condensed Matter 5,3519—3540.

7. CONCLUSIONS

With the implemented modifications the Jain—Lidiard model is capable of reproducing the

observed microstructures for incipient colloid development. However, since the dynamics of the

dislocations and impurities have not been modelled we are not yet able to explain why and how

the colour distribution follows the creep structures.
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