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SCALING PROPERTIES OF TIME-SPACE KINETIC MASS
TRANSPORT EQUATIONS AND THE LOCAL
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Baltzer-Strasse 1, CH-3012 Bern, Switzerland

ABSTRACT. Scaling properties of kinetic mass conservation equa-
tions are presented, and their implications investigated for advective
and diffusive transport in an isothermal system in a single spatial
dimension. It is demonstrated that for a system undergoing pure
advection, scaling the kinetic rate constants by a common factor,
thereby preserving their ratios, is equivalent to scaling the time and
sgace coordinates of the original solution. Diffusive transport requires
that the diffusion coefficient must also be scaled by the reciprocal
factor. These results have far reaching consequences on the possible
form of solutions of the kinetic mass transport equations. It follows that
the local equilibrium solution, corresponding to the limit as the kinetic
rate constants approach infinity, can be extracted from a solution
belonging to finite rate constants merely by scaling the time and space
coordinates of the kinetic solution. Furthermore the velocities of bound-
aries of mineral reaction zones must approach their local equilibrium
counterparts with increasing time. As a practical consequence, numeri-
cal solutions to differential equations representing fluid transport and
kinetic reactions of minerals can be validated against solutions to
algebraic equations representing conditions of local equilibrium for
pure advective transport. Such a test is especially important when
attempting to predict the consequences of dprocesses evolving over
geologic time spans. The theory is illustrated for a single component
system for which an analytical solution exists. A numerical example of
weathering is presented for which kinetic and local equilibrium solu-
tions are compared. Finally it is suggested that the recent controversy
regarding the discrepancy between laboratory and field derived kinetic
rate constants may be a consequence of neglect of the affinity factor in
the expression for the reaction rate when applied to field observations.
This error can lead to field rate constants that are too small by several
orders of magnitude.
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LIST OF SYMBOLS

designation for the ith reversibly reacting aqueous
complex.

designation for the jth primary species.

affinity of the mth mineral.

threshold affinity for the onset of precipitation of the
mth mineral.

general scale factor applied to the space coordinate.
general scale factor applied to the time coordinate.
equilibrium concentration.

concentration of the ith reversibly reacting aqueous
complex.

concentration of the jth primary species.

concentration evaluated at the reaction front I(t).
concentration on the downstream and upstream sides
of the reaction front for the single component system.
solute concentration in the single component system.
inlet concentration in the single component system.
initial concentration in the single component system.
diffusion coefficient.

complementary error function.

notation for a’ general function of time and space
coordinates.

scaled function f.

general designation for a field variable representing
solutesconcentration or mineral volume fraction.

net reaction rate of the mth mineral.

equilibrium constant corresponding to the overall
reaction of the mth mineral.

kinetic rate constant associated with the overall
reaction of the mth mineral.

kinetic rate constant in the single component system.
collective set of kinetic rate constants {k;; . . . ; Ky
distribution coeflicient between solid and aqueous
phases. .
reaction front position.

reaction front corresponding to the mth mineral (for
the ith zone boundary).

designation for the mth mineral.

number of reacting minerals.

number of primary species.

number of moles of the mth mineral in a closed system.
ion activity product corresponding to the mth mineral.
inverse length characterizing the distance for the
solute concentration to reach equilibrium.

gas constant.
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surface area of the mth mineral per unit volume of bulk
rock.

solid surface area per unit volume of bulk rock in the
single component system:.

temperature field at position x and time t.

time.

scale time.

Darcy fluid velocity.

molar volume of the mth mineral.

average fluid velocity.

velocity of the Ith reaction front.

reaction front velocity of the mth mineral (at the ith
zone boundary).

factor in the expression for the equilibration length q
for combined advection-diffusion.

spatial coordinate.

scaled spatial coordinate.

aqueous activity coeflicients for the jth primary species
and ith complex.

similarity variable for pure diffusive transport.
similarity variable for pure diffusive transport for the
mth mineral at the ith zone boundary.

Heaviside function.

characteristic diffusion length.

stoichiometric reaction matrix for reversibly reacting
aqueous complexes.

stoichiometric reaction matrix for mineral reactions.
coefficient varying between zero and one.

scaling parameter.

time for mineral to dissolve completely at inlet.
porosity.

volume fraction of the mth mineral.

initial volume fraction of the mth mineral.

solid phase volume fraction in the single component
system.

initial- solid phase volume fraction in the single
component system.

quantity in the reaction front velocity in the single
component system.

generalized concentration of the jth primary species in
a multicomponent system.

generalized inlet concentration of the jth primary
species.

generalized flux of the jth primary species in a
multicomponent system.

scaled generalized flux.

designation for a local equilibrium quantity.
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INTRODUCTION

A quantitative time-space description of transport of solute species
and their chemical interaction with minerals has the potential of provid-
ing a powerful new tool for analyzing many diverse geochemical pro-
cesses. With the help of the quasi-stationary state approximation it is now
possible to carry out numerical calculations of complex geochemical
systems evolving over geologic time spans (Lichtner, 1988; Balashov and
Lebedeva, 1991; Lichtner, 1991; Lichtner and Biino, 1992; Lichtner and
Waber, 1992). However a quantitative description of natural systems
often involves many uncertainties associated with initial and boundary
conditions, heterogeneities in the flow system, and uncertainties in
describing mineral reaction rates. The reaction mechanism of mineral
reactions may range from surface to transport controlled depending on
the magnitude of the rate constant and the rate of solute transport. As a
consequence the reaction rate may be influenced by the geometry of the
system resulting from the existence of boundary layers surrounding
mineral grains in systems involving a flowing fluid (Murphy, Oelkers,
and Lichtner, 1989). Uncertainties arise in incorporating nucleation
kinetics and in the lack of a complete understanding of the reaction
mechanism and form of the rate law (Steefel and Van Cappellen, 1990).
Kinetic rate laws and their associated rate constants are known for only
very few minerals for both dissolution and precipitation. An added
difficulty in describing mineral reactions is quantifying mineral surface
areas and its change with reaction. For example, the surface area of a
dissolving mineral may either increase with reaction progress as a result
of etch pit formation or decrease as mineral grains dissolve completely.
Since the reaction rate is proportional to the surface area, the uncertainty
in surface area can lead to substantial uncertainty in predicting the rate of
reaction.

This contribution demonstrates that the effects of these uncertainties
on solutions to kinetic mass transport equations may not be as significant
as previously thought, .especially for geochemical processes involving
sufliciently long time spans. This is a consequence of the scaling proper-
ties of solutions to the kinetic mass transport equations. Scaling the
kinetic rate constants by a common factor, which preserves their ratios, is
equivalent to scaling the time and space coordinates of the original
solution and the diffusion coeflicient by the reciprocal factor. This result
has far reaching consequences on the possible form of solutions to the
kinetic transport equations. Because scaling the time and space coordi-
nates merely stretches or shrinks the spatial profile of the solute concen-
tration or mineral volume fraction without altering its magnitude, the
reaction zone sequence and relative maxima and minima are preserved.
As the scale factor approaches infinity, it follows that a kinetic solution to
the transport equations must yield the same relative maxima and minima
for the concentrations of solute species and mineral volume fractions as
the corresponding local equilibrium solution. It further follows from the
scaling relations that the velocities of propagation of the boundaries of

5
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mineral alteration zones, or reaction fronts, become equal to their local
equilibrium counterparts with increasing time under very general circum-
stances. This result was obtained previously by different methods (Ortol-
eva and others, 1986; Lichtner, 1988, 1991). Finally, solutions to kinetic
transport equations belonging to different relative rate constants must
scale to the identical local equilibrium solution provided it is unique.

The scaling properties of the kinetic transport equations do not
depend on specific models used to describe, for example, the change in
surface area or permeability with mineral reaction, provided these rela-
tions are scale independent. In this sense the scaling properties are
model independent. This observation has important consequences for
quantitatively describing mass transport processes in natural systems
characterized by large inherent uncertainties.

SCALING PROPERTIES OF KINETIC MASS TRANSPORT EQUATIONS

Scaling relations may place severe restrictions on the time-space
behavior of quantities defined through solutions to a system of partial
differential equations. Although investigating the properties of solutions
to differential equations by scaling the independent variables is a well
know technique, it does not appear to have been applied previously to
mass transport problems involving mineral precipitation-dissolution re-
actions. These equations are complicated by the presence of moving
boundaries delineating different reaction zones.

Scale Transformation
An example of a scale transformation applied to a function of a single
variable is illustrated in figure 1. Scaling the x-coordinate by the constant
factor o leads to the scaled function f;, defined by

f,(x) = flo~'x), (1)

and therefore the point ¢~! x is transformed to the point x preserving the
value of the function f. As is apparent from the figure, the function is
stretched or shrunk depending on the size of ¢. Shrinking takes place if
o < 1, and stretching if o > 1. Characteristic features of the function f(x)
such as discontinuities, relative minima, maxima, and inflection points
are all preserved in the scaled function f,. Thus, for example, at a relative
maximum or minimum Xg, the first derivative of the function f(x) van-
ishes according to the equation

df
o %0 = 0. @)

For the scaled function {; it follows that

df, 1 df
ax (oxp) = 0~ dx (x0) =0, (3)

-
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Fig. 1. Scaling transformation applied to a function f(x) of a single variable. Profiles are

and therefore the scale transformation preserves the property of a

relative maximum or minimum. A similar relation holds for inflection
points defined by vanishing of the second derivative.
form

The scale transformation of the time and space coordinates of the
X =

T

ty =

®)

4)
with constant scale factor o, applied to some function f(x, t) results in the
transformed function f,(x, t) defined by

fo(x, 1) = (X, t5).

The inverse transformation is defined by

®
fix, t) = fu(ox, ot).

The function f may correspond, for example, to field variables such as

(N
solute concentrations, mineral volume fractions, temperature, and pres-
sure. As an example, consider the function ¢(x, t) defined by the equation

bo
————(vot — X) (Vit £ X < Vot)
dx, 1) = J(va — V)t
0 .

otherwise

3

(8)
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Fig. 2. Illustration of a traveling wave. The traveling wave is invariant under a scale
transformation of both the space and time coordinates.

where &, v, and vy are constants. The function ¢(x, t) represents a
traveling wave as illustrated in figure 2 for two different times, t; and t,.
As defined, clearly ¢ satisfies the scaling relation

b(0x, ot) = d(x, 1), )

and thus is invariant under a scale transformation. Another interesting
feature of the function ¢ is the transformation property of the function
giving the position of a constant value of ¢ with time. This function,
denoted by I(t), is defined implicitly by the relation

$((t), ) = &, = constant. (10)
It follows that I(t) is given explicitly by the expression
¢1 ¢1 }
I(t) = —vi|t. 11
( ) |:( d)O d)() Vi ( )

The velocity at which this point moves is given by

dl
vl=a=[(l —%:))v2+%)vl]. (12)

)
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From these relations the scaling propertles of I(t) and v, follow given by
the expressions:

I(at) = ol(t), (13)
and

vi(ot) = v|(t) = constant. (14)

This simple example is useful for investigating the scaling properties of
chemical reaction fronts as demonstrated below.

Application of the scaling relations to the non-reactive mass trans-
port equation is presented in app. A. In what follows it is assumed that the
reader is familiar with the general form of the reactive mass transport
equations. Before proceeding to the general case of the transport equa-
tions in an open system, first the simpler case of a closed system is
considered.

Closed System

The mass transfer equations for a well-mixed, closed system may be
expressed in the form

= é;lqmlm, (15)

and

dn,,

' T L, (16)
for aqueous species and minerals, respectively. In these equations n,, and
I, denote the number of moles and reaction rate, respectively, of the mth
mlneral ¥, denotes the generallzed concentration of the jth primary
species with concentration C ;» defined by

%=q+24mb (17)

where the subscript i refers to aqueous complexes with concentration C;,
and vilrefers to the corresponding stoichiometric reaction coeflicients. It
. i e ey .

is assumed that local equilibrium holds within the aqueous phase with the
concentrations of aqueous complexes related to concentrations of the
primary species by mass action equations. The quantity v;,, denotes the
stoichiometric coeflicient for reaction of the mth mineral with the aque-
ous solution. These equations are subject to the initial conditions

¥(0) = ¥, (18)
and

nm(d) = n?n. (19)

s
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In a kinetic representation of mineral reactions the reaction rate I, is
specified as some known function of the concentrations of the primary
species, which are used to characterize the system. The basic requirement
that must be satisfied by the rate law is that the reaction rate tend toward
zero as equilibrium is approached. One form for the kinetic rate of
mineral reactions consistent with transition state theory (Aagaard and
Helgeson, 1982) is given by

Ly = —kpsu{l — exp[—A,/RT]}, (20)

where k,, denotes the kinetic rate constant, s,, denotes the reacting
surface area, A, denotes the chemical affinity, and R and T denote the
gas constant and temperature, respectively. The quantity in curly brack-
ets containing the affinity in the rate expression ensures that the reaction
rate vanishes at equilibrium. The rate is taken as positive for precipitation
and negative for dissolution, with units of moles per unit volume per unit
time. An essential feature of the rate law regarding the scaling properties
of the solution is its linear dependence on the kinetic rate constant.

Scaling the time coordinate according to eq (5) leads to the trans-
formed equations

dw;
1O = 0 2 Vinln; 21)

and

dn
dt,

m

= ol,,. (22)
. .
Noting that the kinetic rate 1,, is proportional to the kinetic rate constants
km, the scaled equations are identical in form to eqs (15) and (16) if k,, is
replaced by ok, for all reacting minerals. Consequently, because the
initial and boundary conditions are invariant under the scale transforma-
tion, these equations must have solutions identical to the original equa-
tions, and therefore it follows that ¥(t; {k}) scales with time according to
the relation

Vo7t ofk}) = Wy(t; {K)), (23)

with afk} = {gk,, . . ., oky] or, alternatively
V,(t; ofk}) = ¥i(ot; {k}). (24)

A similar result holds for the function n,(t). Therefore if a solution is
known for one set of kinetic rate constants, it can be obtained for any
other set that preserves their ratios, merely by scaling the time t. Thus the
reaction path followed by the system is identical for both sets of rate
constants; however, the velocity of the system point as it moves along the
path is greater the larger the rate constants. The sequence of secondary
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minerals formed, therefore, is also the same, only the times at which they
occur along the reaction path are different related by the scale factor.

Changing the relative values of the rate constants leads, in general,
to a different reaction path and may involve formation of different
secondary minerals. However, because the system is closed, the final
equilibrium state of the system is a function only of its initial state and
must be independent of the particular reaction path taken by the system
and hence the kinetic rate constants.

Open System

In an open system involving advective and diffusive mass transport,
the equations describing the system are given by

2 o) a—J = 2 Vinla, (25)

for solute species, where denotes the generalized flux consisting of

contributions from advection and diffusion defined by
oY,
;= -46D " + u¥;, (26)

where D denotes the diffusion coefficient considered to be the same for
all species, for simplicity, and u designates the Darcy velocity, in general a
function of time and distance, and

. o=Vl (27)

for minerals (for more details, see Lichtner, 1985, 1992). These equations
are based on a continuum representation of a porous medium. Defini-
tions of the variables used in these equations can be found in the list of
symbols.

The transport equations are subject to initial conditions specifying
the modal composition of the unreacted rock, the composition of the
fluid occupying the pore spaces at t = 0, and boundary conditions
specifying the composition of the fluid entering the porous medium at
the inlet. The initial fluid composmon is specified by the quantity ¥
according to the equation

¥i(x, 0) = ¥, (28)
and the initial modal composition of the host rock by ¢2, according to

dm(x, 0) = &y, (29)

The composition of the fluid at the inlet specified by \I’0 is defined
through the boundary condition

‘Ifj(O,‘t) =v). (30)
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Other boundary conditions are also possible, for example, by specifying
the fluid flux at the inlet. For the scaling relations to be applicable it is
necessary that the initial and boundary conditions remain invariant
under a scale transformation, which rules out the flux boundary condi-
tion.

Although the positions of the boundaries of the various reaction
zones provide convenient quantities with which to describe the system,
they do not appear explicitly in the kinetic transport equations. They are,
however, implicitly contained in the functions representing the mineral
volume fractions. This is in contrast to a local equilibrium description in
which the positions of the various reaction fronts are essential variables
for describing the system as it evolves in time. In a kinetic description it is
possible to define the position of the ith reaction zone boundary corre-
sponding to the mth mineral, denoted by l,,, by the equation

& (1, (), t) = constant. 31D

Note that this equation applies to the end points of a reaction zone by
taking the constant equal to zero, where the modal abundances vanish as
a consequence of the finite rates of reaction. Often, however, a reaction
zone is further divided into subzones. At the boundaries of these sub-
zones the modal abundances need not vanish. In a local equilibrium
description jump discontinuities occur across the boundaries of the
subzones as well as the end points of the zone. However, for each reaction
front it is always possible to find at least one mineral for which its modal
abundance vanishes. For a non-zero value of the constant, this definition
of the position of a reaction front includes fronts contained within a
reaction zone, determined by a constant value of the modal composition
of some mineral. This definition of a reaction front only holds asymptoti-
cally after the system achieves a steady-state, and the front velocities
become constant. For diffusive transport under conditions of local equi-
librium the mineral modal abundances are rigorously constant at each
front for all time starting at t = 0 (Lichtner and Balashov, 1992).
However, for combined advection and diffusion, in general the mineral
modal compositions at the various reaction fronts change with time
approaching a constant-value asymptotically.

The reaction front velocities are obtained by differentiating the
above equation with respect to time to give

ad
o= - 2 (32
a¢m/ ax’
The front velocities are useful quantities for comparing the rate of
weathering of different minerals, for example.

As in a closed system, because the reaction rate I, of the mth
mineral, defined in eq (20), is proportional to the kinetic rate constant k,,,
the transport equations are linear in the rate constants. This circum-
stance leads to significant jmplications on the possible form of solutions to
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the kinetic mass transport equations for rate constants that differ by a
constant scale factor. Scaling properties of the kinetic mass transport
equations follow directly from eqs (25) and (27). These properties are
more complicated than the non-reactive transport equations due to the
presence of reaction fronts. Scaling the time and space coordinates by the
factor ¢ according to eqs (4) and (5) leads to the transformed transport
equations

a2
. = () + —i = —0 2 vl (33)
and
b, —
ad: =aV,l,, (84)

where the transformed generalized flux (¥ is defined by
. a9
QJ = —do™'D G_XU + u‘I’j. (35)

Both eqs (33) and (34) have the identical form as the original transport
equations given by eqs (25) and (27), if (k| is replaced by o{k}, and D is
replaced by o~! D. Furthermore, both sets of equations are subject to the
identical initial and boundary conditions given by eqs (28), (29), and (30)
which are invariant under the scale transformation. Therefore a solution
to the scaled transport equations is related to the corresponding solution
to the original equations according to

Vi(Xgs to; o{k}, 67D, u) = ¥i(x, t; {k}, D, u), (36)
and

bn(X, to3 alkl, 07D, u) = dp(x, t; {k}, D, u), (37)

where the functions on the left hand side of these relations are solutions
to eqs (33) and (34), and the functions on the right hand side to egs (25)
and (27).

Just as it is possible to deduce the behavior of the solution to the
non-reactive transport equation on the diffusion coefficient directly from
the scaling relation (see app. A), in this case it is possible, in addition, to
investigate the behavior of the solution on the kinetic rate constants. To
this end it is convenient to introduce the field variable Fy(x, t; {k}, D, u)
and rewrite eqs (36) and (37) in the general form

Fo(Xg, te; a{k}, 71D, u) = Fy(x, t; {k}, D, u), (38)

where F, signifies the quantities ¥; and ¢m. This relation may be ex-
pressed in the equivalent form

Fo(x, t; a{k}, 07D, u) = F (ox, ot; {k}, D, u), (39),
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in which x is replaced by ox and t by ot. Thus scaling the rate constants by
a common factor and the diffusion coefficient by the reciprocal factor is
equivalent to scaling the time and space coordinates by the same factor.
From this equation the behavior of the system for different kinetic rate
constants and different diffusion coefficients related by the scale factor o
to the original constants can be deduced. It must be emphasized that in
order for the scaling relation to hold, all rate constants must be scaled by
the same factor 0. Changing the relative kinetic rate constants in general
leads to an entirely different solution with a different sequence of reac-
tion zones. However, as discussed below, for sufficiently long time spans
all solutions must tend to the same asymptotically limiting solution,
provided it is unique, regardless of the choice of rate constants.

An immediate consequence of eq (39) for a system undergoing pure
advective transport is the scaling relation

F,(x, t; ofk}, u) = F (ox, ot;(k}, u). (40)

Thus scaling the time and space coordinates by a common factor is
equivalent to scaling the kinetic rate constants by the same factor. Note
that no assumptions are made regarding the particular models that may
be used to represent mineral surface area, porosity, or permeability.
They may be described by any scale invariant function of the mineral
volume fractions, for example. Hence in this sense the scaling relations
are model independent.

Zone boundary positions and reaction front velocities.—From the scaling
relation satisfied by the mineral volume fraction, it is possible to derive
scaling properties for the positions of the reaction zone boundaries or
reaction fronts and their velocities. The position of the ith reaction front
corresponding to the mth mineral, 19(t; {k}, D, u), is defined implicitly by
the relation

bn(19(t; {k}, D, u), t; {k}, D, u) = constant, 410

according to eq (31). Likewise the position of the reaction front,
19(t; a{k}, 0~'D, u), corresponding to the scaled transport equations
satisfies a similar equation

bm19(t; olk}, 07D, u), t; a{k}, 0~! D, u) = constant. (42)

Making use of the scaling properties of ¢, the latter relation can be
expressed as

Gum(alt; ofk}, 07'D, u), at; {k}, D, u) = constant. (43)

Note that in this expression 1, is evaluated at time t and not ot. Compar-
ing this equation with eq (41) in which t is replaced by ot leads to the
scaling relation for the reaction zone boundaries:

ol®(t; olk},0'D, u) = 1%ot; (k}, D, u). (44)
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This relation is analogous to the transformation of the spatial coordinate
x. Thus the position of the reaction front at time ot, corresponding to rate
constants {k} and diffusion coeflicient D, is equal to o times the position of
the front at time t corresponding to the scaled rate constants o{k} and
diffusion coefhicient o=! D.

The scaling relation for the reaction front velocities follows from the
definition

vi(t; [k}, D, u) = —d—1<'>( {k}, D, u). (45)

Differentiating both sides of eq (44) with respect to time yields the scaling
relation

vt ofk}, 7D, u) = vi(at; (k}, D, u), (46)

in which the scaling factor ¢ cancels. According to this result by scaling
the time coordinate the velocities of the zone boundaries are related to
the velocities corresponding to the solution with scaled rate constants
a{k} and diffusion coefliclent 6=! D at time t.

Local Equilibrium Limit
A solution to the kinetic transport equations approaches the local
equilibrium limiting solution as the rate constants grow without bound
according to the relation:

[}(i]m Fo(x, t; {k], D, u) = Fo(x, t; D, u), (47)

where Fy(x, t; D, u) designates field variables corresponding to condi-
tions of local equilibrium as defined in app. B. By simultaneously consid-
ering the limit in which {k} = @ and D — 0, the pure advective local
equilibrium limit is obtained:

[gm Fo(x, t {k}, D, u) > F,(x, t; u). (48)

D—0

These relations may be taken as the definition of the local equilibrium
limit.

To investigate the implications of the scaling properties on the
relation between the kinetic solution and the local equilibrium limiting
solution, consider the limit o — « applied to eq (39). The right hand side
of this equation tends, by definition, to the local equilibrium limit
corresponding to pure advective transport as follows from eq (48).
Therefore by scaling the time and space coordinates of the kinetic
solution Fy(x, t; {k}, D, u) corresponding to fixed rate constants {k}, the
kinetic solution can be made to approach arbitrarily close to the pure
advective local equilibrium limiting solution according to

lim F (ox, ot; {k], D, u) = lim F.(x, t; a{k}, 07!D, u) = Fi(x, t; u). (49)
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The reaction zone boundaries and velocities also approach their limiting
values corresponding to the pure advective local equilibrium limit:

1 . .
lim o 19(at; {k}, D, u) = lim 19(; o{k}, 67'D, u) = [9(t; u),  (50)

00 T—®
and

lim v®(ot; {k}, D, u) = lim vi(t; a{k}, 6~! D, u) — ¥¥. (51)
g—>0 g—x©

These relations are of fundamental importance. They imply that
after a sufficient amount of time has elapsed the profiles of the solute
concentration and mineral volume fraction obtained from the kinetic
transport equations bear a strong resemblance to the corresponding local
equilibrium solution. Merely by scaling both the time and space coordi-
nates of the kinetic solution, it is possible to extract the local equilibrium
limiting solution for any arbitrary set of rate constants. A scale transforma-
tion of the spatial coordinate does not change the amplitude of the solute
concentration or mineral volume fraction but only stretches or shrinks
the spatial profile. Therefore given a sufficiently long time span, a kinetic
solution belonging to finite rate constants preserves maxima and minima
of the corresponding local equilibrium solution. The widths of the
various reaction zones and the shapes of the concentration and volume
fraction profiles, however, are different in the kinetic solution.

In an isothermal system the solution to the kinetic transport equa-
tions approaches asymptotically a steady-state in which the various reac-
tion zones propagate with constant velocity. The local equilibrium veloci-
ties ¥¥ corresponding to pure advective transport in an isothermal
system are also independent of time as are the solute concentrations and
mineral modal abundances within each reaction zone. Therefore it
follows from eq (51) that if ¥© obtained from a kinetic solution is also
constant independent of the time, it must be identical to the local
equilibrium limiting value ¥¥- Thus the reaction front velocities in a
kinetic description approach asymptotically the local equilibrium limiting
values. This result has been obtained previously using different methods
by Ortoleva and others (1986) and Lichtner (1988).

The asymptotic solution to the kinetic transport equations may be
depicted as a traveling wave which does not change shape in the vicinity
of each reaction front. The velocity of the ith reaction front li(t) in the
traveling wave approximation is given by Lichtner (1988)

dl; ()
Vi= .= -1 . (52)
dt <¢\I’J>1 + 2 1}jm\/m <¢m>i
In this equation the angular brackets (. . .); denote the difference in the
enclosed quantity across the ith reaction front. If the solute concentration
comes to equilibrium with the minerals on either side of the front, this
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expression reduces to the Rankine-Hugoniot equations, and the veloci-
ties of the fronts are identical to that obtained from local equilibrium
considerations. Normally reaction zones increase in width at a constant
velocity. Special zones, referred to as ghost zones, have a constant width
and are governed by diffusive transport (Lichtner and Balashov, 1992).
In alocal equilibrium description their width approaches zero in the limit
as the diffusion coefficient tends to zero.

Sensitivity of the solution to kinetic rate constants.—As demonstrated
above, a solution to the kinetic transport equations for a finite set of rate
constants {k} can be made to approach as closely as desired to the local
equilibrium limiting solution corresponding to pure advective transport
by scaling the time and space coordinates. Since this statement is true
regardless of the choice of rate constants {k}, it further follows that two
solutions with the same initial and boundary conditions but correspond-
ing to different sets of kinetic rate constants must scale to the same local
equilibrium limiting solution. This is true provided the local equilibrium
solution is unique. In addition the sequence of reaction zones in the
steady-state limit must be the same as determined from the correspond-
ing local equilibrium solution. Thus altering the kinetic rate constants
cannot affect the reaction zone sequence. From these results it can be
concluded that for sufhiciently large time spans kinetics plays a minor role
in determining the behavior of the system.

It should be kept in mind, however, that a solution corresponding to
finite rate constants {k} does not strictly approach the local equilibrium
solution with increasing time. Rather only the kinetic solution scaled in
both the time and space coordinate approaches arbitrarily close to the
local equilibrium solution as the scale factor tends to infinity. However,
the interior region of a reaction zone approaches the local equilibrium
limit more rapidly than the region in the neighborhood of a reaction
front.

Pure Diffusion

So far the discussion has focused on transport involving both advec-
tion and diffusion. Similar results can be derived for pure diffusive
transport. In this case it is useful to consider a slightly different scale
transformation of the form (Balashov and Lebedeva, 1991)

Xy = x/\/(;, (53)
and
t, = t/o. (54)

As pointed out by Balashov (private communication), this relation may be
derived by considering the more general transformation:

x' = ax, (55)
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and
t’ = bt’ (56)

where a and b are arbitrary real numbers. Solutions to the combined
advection and diffusion kinetic transport equations then scale according
to

F(ax, bt; {k}, D, u) = F(x, t; b-'{k}, a*>b~'D, ab~!u). (57)

The previous transformation defined by eqs (4) and (5) is obtained by
demanding that the coefhcient multiplying u be unity, or

o l=a=h. (58)

The transformation for pure diffusive transport given by eqs (53) and
(54) follows from the condition

b = a?, (59)

giving unit coefficient multiplying D. With this transformation solutions
to the pure diffusion kinetic transport equations scale according to

Fo(Vox, ot; {k}, D) = F(x, t; o[k}, D), (60)

in which the diffusion coefficient remains unchanged. The reaction zone
boundaries and reaction front velocities satisty the relations

—=19(ot; {k}, D) = 19(; a{k}, D), (61)
\/_

and
Vovi(ot; {k}, D) = viXt; o{k}, D). (62)

Under the scale transformation given by eqs (53) and (54), the local
equilibrium limiting solution has the property that it is invariant:

F (Jox, ot; D) = F(x, t; D). (63)

This result implies that the pure diffusion moving boundary problem can
be described in terms of a single variable m, referred to as the Stefan
variable, defined by

(64)

nx, t 2\/-

This result has been used by Novak, Schechter, and Lake (1989) to obtain
solutions for pure diffusion. The positions of reaction fronts are given by

. 19=2ndyDr, (65)
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with the corresponding velocities

D
(l) = n(l)\/: (66)

for constants n). These quantities are not invariant but scale according to
the relations

— 190t; D) = 19; D), (67)
\/,

and
Vovi(ot; D) = ¥0(t; D), (68)

similar to the kinetic case. A

From the scaling relations it follows that the limit of the kinetic
solution as ¢ — o« approaches the corresponding local equilibrium
solution according to :

lim F,(yox, ot; {k}, D) = lim Fo(x, t; o{k}, D) > Fu(x, t; D). (69)

o—>®

Likewise the reaction front positions and velocities approach the corre-
sponding local equilibrium limit. For example it follows that

B(at; {k}, D) 19 ofk}, D)
1m —— = 1i1m =
= I0@uD) o= 10t D)

=1, (70)
with a similar result for the reaction front velocities.

EXAMPLES

In this section several examples are presented illustrating the scaling
properties of the kinetic mass transport equations. The relation between
solutions based on a kinetic description of mineral reaction rates and the
corresponding local equilibrium limit are investigated.

Single Component System

The first example considers a single component system. As a fluid
undersaturated with respect to a solid phase infiltrates or diffuses into a
porous column containing the solid, the solid dissolves producing a
reaction front 1(t) that advances with time in the direction of flow. The
problem is to determine the position of the dissolution front as a function
of time and the concentration profile of the solute species and modal
composition of the solid as functions of time and distance.

For the simple system involving the reaction of a single component
mineral such as quartz according to a linear rate law, an analytic solution
to the transport equations exists based on the quasi-stationary state
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approximation assuming constant porosity, permeability, and mineral
surface area (Lichtner, 1988). In this approximation the partial time
derivative contained in the transient solute transport equations is ne-
glected. The transport equations take the form

d2C dC
D e Yk ks(C — Ce)0(x — (1)), (71)
for the solute species, and

I
at

= ksV(C — C.)0(x — I(1)), (72)

for the solid phase, where C denotes the solute concentration, k denotes
the kinetic rate constant, s denotes the specific surface area, C.q denotes
the equilibrium concentration, and ¢, and V, denote the volume fraction
and molar volume of the solid phase, respectively. The function 6(x)
denotes the Heaviside function equal to one if x > 0, and zero otherwise.
The position of the dissolution front is denoted by I(t). These equations
are solved subject to the initial and boundary conditons

G0, t) = G, (73)
and

b(x, 0) = &/, (74)

determining the inlet fluid composition and initial solid modal composi-
tion, respectively. The moving boundary problem posed by these equa-
tions requires determining the solute concentration C(x, t; k, D, u), min-
eral volume fraction ¢(x, t; k, D, u), and position of the dissolution front
I(t; k, D, u). The solution to these equations is given in app. C.

The scaling properties of the quartz dissolution front determined
from eq (C.26) is illustrated in figure 3 where the reaction front position
is plotted as a function of time for o = 1, 2, and 10. Also shown in the
figure is the local equilibrium limit for pure advection (dashed-dotted
line) and combined advection and diffusion. For this example k = 10~!°
molescm™2s !, s=1cm ™, D=5 x 10"*cm?s L, u=1my~!, C;q =103
moles liter~!, ¢ = 0.9, and Gy, = 0. The values for k, s, and Cq
correspond approximately to the dissolution of quartz at 100°C for a
grain size of 1 mm. As time increases the front velocities become constant
approaching the pure advective local equilibrium limit, with the positions
of the fronts displaced by the characteristic diffusion length A = ¢D/u =
15 cm. As o increases, the position of the front described by the kinetic
formulation approaches the pure advective local equilibrium result. The
thin dashed lines illustrate the scaling relation

1(2t; k, D) = 2I(t; 2k, D/2), (75)
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Fig. 3. Scaling propertiesof the dissolution front I(t; k, D, u) illustrated for a single
component system. The position of the reaction front in centimeters is plotted as a function
of time in years for kinetic and local equilibrium solutions to the transport equations. In
addition tge local equilibrium limit for combined advection and diffusion and pure
advection (dashed-dotted line) are also shown.

showing the correspondence between the dissolution fronts with a scaling
factor o = 2 at times t = 8000 and 16,000 yrs.

Shown in figures 4 and 5 are the results of scaling the solute
concentration and volume fraction defined by eqs (C.1) and (C.2), respec-
tively. Both quantities are plotted as a function of distance for an elapsed
time of 16,000 yrs with the origin of the coordinate system taken to
coincide with the instantaneous position of the dissolution front. The
solid line labeled o = = in figure 4 corresponds to the local equilibrium
limit. At the reaction frent the solute concentration is approximately
constant as can be seen from the figure. The concentration decreases
toward the inlet as a consequence of diffusive transport. As is apparent
from the figures, with increasing o the solution to the kinetic transport
equations approaches the local equilibrium limit. It should be empha-
sized, however, that with increasing time for a fixed kinetic rate constant,
the kinetic solution to the transport equations approaches a steady-state
limit, given by the curves labeled ¢ = 1, which clearly does not corre-
spond to the local equilibrium solution. Only by scaling both the time and
space coordinates can the local equilibrium solution be extracted from
the kinetic solution.

Application to Weathering

This section considers weathering of a hydrothermally altered pho-
nolite host rock found in the Pogos de Caldas alkaline complex. This

-
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Fig. 4. Solute concentration C(x, t; ok, 67'D, u) plotted for t = 250 yrs as a function of
distance relative to the instantaneous position of the dissolution front I{t; ok, o~!D, u) for
scale factors ¢ = 1, 2,5, 10, 100, and «. The local equilibrium solution corresponds to
o = », The curves are calculated for the same conditions as in the previous figure. Note that
the solute concentration at the reaction front becomes independent of the scaling factor as o
increases.
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Fig. 5. Volume fraction plotted as a function of distance relative to the dissolution front
for the same conditions as figure 3.
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problem was considered previously.as part of an international natural
analogue project on the transport of uranium (Lichtner and Waber,
1992). There it was demonstrated that qualitative agreement with field
observations conducted by Waber (ms) could be obtained by considering
downward percolation of rainwater through a host rock consisting of the
minerals K-feldspar, kaolinite, illite (as muscovite), and fluorite. In this
work this example is used to illustrate the scaling properties of the kinetic
transport equations.

This system is assumed to be described in terms of 9 primary species
consisting of K*, Na*, Ca?+, AP+ H*, SiO,, F~, HCOj, and Cl~. Both Na*
and Cl~ are inert but are included to describe the composition of the
infiltrating rainwater. Thermodynamic data used in the calculation, with
the exception of illite, were taken from the EQ3/6 database. The qualita-
tive features of the resulting weathering profile are extremely sensitive to
the value used for the illite log K. In'this work a log K of —9.5 was chosen
compared to the value of —11.02 for muscovite in the EQ3/6 database.
The latter value was found to produce geologically unreasonable results
resulting in the precipitation of large amounts of K-feldspar. The value
used in the present work, however, does not result in as good a fit to field
observations as the value of —10.4 used in Lichtner and Waber (1992). In
that case, however, illite appears as a ghost zone requiring special
considerations to obtain a proper solution (Lichtner and Balashov,
1992).

First the situation represented by local chemical equilibrium is
considered. This results in a set of algebraic equations to determine the
solute concentrations, mineral volume fractions, and reaction front veloc-
ities. The results of reaction of percolating rainwater through the hydro-
thermally altered phonolite host rock are presented in table 1. The
details of the calculation may be found in Lichtner (1991). Here it is
noted that the local equilibrium equations do not determine the sequence
of reaction zones directly but only by trial and error methods involving
iterating the zone sequence until a consistent solution is obtained. Five
distinct alteration zones were found resulting in the zone sequence:

F|Gbs|Gbs — Kin|Il|Kfs — IIl|Kfs — IIl — FI|Kfs — Ill — Kln — FI;

where F denotes a zone consisting of fluid only with the composition of
the infiltrating fluid. Note that kaolinite forms two distinct reaction
zones: a zone at the top of the weathered column consisting of both
primary and secondary kaolinite and primary kaolinite deeper in the
profile.

Presented in table 1 are the pH, Pco,, concentrations for primary
species, generalized concentrations ¥; and aqueous complexes, and
mineral volume fractions for each reaction zone beginning with the inlet
and ending with the unaltered host rock. The bottom two rows give the
porosity ¢ and velocities of the various reaction fronts relative to the
Darcy velocity vy, respectively. The inlet fluid is taken as rainwatey
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TABLE 1

Results of a local equilibrium calculation with the identical inlet fluid composition and
initial host rock composition as used in the corresponding kinetic calculation shown in
figures 6 and 7. For sufficiently long elapsed time spans, the results show excellent
agreement with the corresponding kinetic calculations

inlot ome 1 Zone 2 7onc 3 7oma 4 some & some 6
pH 430 4.32 4.32 5.75 6.75 5.82
log Pco, —2.00 —2.00 —2.00 —2.10 —2.35 —2.11
primary species
kTt 1.00x10~" 1.00x10~% 10010~ 1.26X10~% 3.06x107F 3.07x10~4 Ta1x10~—F
Nat 2.74%x107% 2.74x107%  2.74x1070 2.74x1073 2.74x1079 2.74x10% 2.74x10~%
Ca?t s00x10~0 s.00x107%  s00x1078 s00x10%  4.99x1078 sa0x107* aasx1074
A 8.24x1071 | 7.55x1077 3.93%x10777 1a6x10=13 1Gox10718 gs1x10-18
5104 (aq) 1.00x107¢ 1.00x10~6¢ 5.68x107° x0Tt s.99x10~* 1.72x1073
HCO, 3.10x10~8 3.25%1076 7.07x1073 2.48%10~* 2.48x1074 #.11%107%
F- 1.00x107 191 g99x10™11 g99x10~ " 10010710 100x10710 gazxieT? 6.00x10~%
cl— 9.50x10~% 9.50x10™%  9.50x10~0 ea0x10~"  9.50x107%  950x1070 9.50x10~9
v
KT 1.00x10~% 1.00x10~7 100x10 " 1.26x10- % 3.06x1077 3.07x10 7 111x10™F
Nat 2.74%x107% 2.74x107% 2.74x1073 2.74x10~% 2.74x707% 2.74%x707% 2.74x1073
Catt s.00x10~6 2.00x10~6 5.00%10™0 5.00x10~6 s.00x10—8 3.1 319x1074
At 1.00x10719 1 925x1077  g2axi0”7 179x10~?  g28x107 1s2xi0 8.94x1076
$104 (aq) 1.00x 106 1.00x10—8 5.68x1079 5.68x107° 5.96x10~% 6.00x10~4 172108
HCOy 3.43x107% 3.43x107%  aa3xi0”? 3.43x1074 3.43x107 s.43x10* 3.43x107%
T 10010~ 14| 100x10710 1p0x10710 1.00x10~10  100x1071 gasxio—? 6.28x10~4
ci— 9.50x10~% 9.50x107°%  9.50x1077 9.50x10™%  9.50x10778 9.50x70~% 9.50x10~%
aqueons complexes
AoOHEF 131x107TT ] 1.46x1077  1.46x1077 2.02%10° 19 6.80x10° 17 7.3Tx107 0% =12
Aoy f 2.38x10~7 12 240x107%  2.40x1078 worx10710  2m6x107'2 saosxi072 e -n
ANOH) 3 (aq) sa0x107 1| saax10710 asax10710 saax1070 raaxioT!l raaxae—!? 1 -n
AOH) T 7.50x10716 ] g =12 gasxio='? 2aex107'® 7aaxi0” 7eaxi0T] 8.92x107 12
ATRF 2o2x107 8| o “M 0 ggrxt0m ™ taax10718 0 4a0x1078 eaxr07? 9.86x10~7
AIFy (aq) 2.59x107 24 | 308x10720  aaax10720 aesxr02 saixi0T® qarxae—d 6.91x10~8
AR 9.03x10732 [ g2ax10~2 saaxi0728 40ax3073 0 a0 179x0™? 1.04x 10"
Hy8i0, 301x10712 [ aarx10712 1mex107'0 s0axi107? as2x1077 0 s4ax10T 1.82x1077
(:0:— 3.00x10712 ] 331x1071¢ saixi0—1? 1.96x10~Y 7.03x10=8  741x1078 2.81x1079
COy(aq) 3.40x107% 3.39x1074 —4 2.72x107%  9.46x107%  g3axi0” 2.61x1074
CaFt 2.28x107 181 gaaxi0T!d 2.25%x107 %% 239x10718  7.77x007 7.89%1077
CaCOy(aq) 2.90x107 % | sa9x107* sa9xieTT 1aax10™' g2rx107!0 3aexi078 1.41x10~7
mincral modal abnndances
Pgibbsite 0.3751 9.9313x10~ % 0. 0. 0. 0.
Blnolinite 0. 0.5826 0. 0. 0. 0.1500
ék-fnldspn.r 0. 0. 0. 4.4920 0.4934 0.6000
Billite 0. 0. 0.5491 0.3372 0.3366 0.1500
bhnorite 0. 0. 0. 0. 4.9685x10”%  5.0000x1072
& 0.6249 . 0.4164 0.4500 0.1708 0.1204 5.0000 X102
nfg 78761077 4.768X107° 2085100 5.963x10°°  1.514x1077 5.674x10~F

adjusted for infiltration through a soil zone at the top of the weathered
profile with the composition given in the column labeled inlet in table 1.
The inlet concentration of the chloride ion is calculated by charge balance
assuming values for the other species given in table 1 with an assumed pH
of 4.3 and a log P¢o, of —2. The unweathered host rock is represented as
a homogeneous porous medium with the modal composition given in the
column labeled zone 6 in table 1 consisting of minerals K-feldspar, illite
(muscovite), kaolinite, and fluorite.
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According to table 1 the pH jumps from its initial value of 4.3 to 5.75
across the gibbsite-kaolinite | illite reaction front as illite dissolves produc-
ing kaolinite and gibbsite. It jumps again to 6.75 across the illite |
K-feldspar-illite reaction front as K-feldspar dissolves producing illite.
The pH drops to approx 5.8 as the fluid comes to equilibrium with the
hydrothermally altered phonolite host rock. The steep rise in the pH
from approx 4.3 to 6.75 represents a hydrolytic front at which K-feldspar
and illite dissolve, and kaolinite and gibbsite precipitate. The dominate
aluminum species in the zones with fluoride present consist of the
fluoride complexes AlF; and AlF;.

Next the solution to the kinetic mass transport equations is consid-
ered. Kinetic calculations are based on the quasi-stationary state approxi-
mation taking into account kinetics of both mineral precipitation and
dissolution reactions (Lichtner, 1988). Further details of the method of
calculation may be found in Lichtner (1992). The kinetic rate constants
and surface areas used in the calculation are listed in table 2. For
K-feldspar the rate law is taken from Helgeson, Murphy, and Aagaard
(1984). Ilite is taken to have the same rate constant as K-feldspar but with
a surface area 20 times smaller. A reference Darcy velocity of 1 m y~! is
used in the calculations.

Shown in figure 6 is the resulting volume fraction profile plotted as a
function of distance for elapsed times of 2 my. Gibbsite along with
secondary kaolinite and illite appear as alteration products during weath-
ering as K-feldspar, fluorite, primary kaolinite, and illite dissolve. The
qualitative features of the weathered profile and comparison with field
observations are presented by Lichtner and Waber (1992). A thick, high
porosity, kaolinite zone forms near the surface consisting of both primary
and secondary kaolinite, followed by a dissolution front of primary
kaolinite deeper in the profile. Both gibbsite and illite form bi-modal
distributions. A plateau occurs in the K-feldspar profile with a gradual
increase in modal abundance with depth approaching the value in the
unweathered rock. The general features of these zones are in qualitative
agreement with field observations.

Shown in figure 7A is the kinetic result for the mineral volume
fractions corresponding to an elapsed time of 100,000 yrs plotted as a

TABLE 2
Kinetic rate constants k., and initial surface areas s, used in the kinetic
calculations
Mineral k (moles cm~%sec™!) s (cm™)
K-feldspar 3.16 x 10716 10.0
illite 3.16 x 10-16 0.5
kaolinite 1.0 x 107V 45.0
gibbsite 1.x 10716 5.0
fluorite 1. x 10713 1.0
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Fig. 6. Mineral modal abundances corresponding to the weathering of a hydrother-
mally altered phonolite host rock plotted as a function of depth after elapsed time of 2 my.
The inlet water percolating through the top of the weathered column has the composition
given in the first column in table 1.

function of distance. In figure 7B the local equilibrium result given in
table 1 is compared with the kinetic result corresponding to 2 my scaled
by a factor of 20 to a time of 100,00 yrs. Comparing figures 7A with B
clearly demonstrates that the local equilibrium solution is very different
from the kinetic solution for early enough times. Nevertheless as figure
7B demonstrates, by scaling the kinetic solution it can be made to
approach arbitrarily close to the local equilibrium result. The major
difference is the smooth profile obtained in the kinetic case compared to
the sharp reaction front in the local equilibrium result. Notice that all
reaction zones with the exception of the kaolinite zone near the surface
agree remarkably well with the local equilibrium values. The volume
fraction of kaolinite in this zone, however, is still increasing with time. To
obtain better agreement a larger scale factor would be necessary.

The concentration profiles of solute species K*, total Al, SiO,, and
the pH are compared in figure 8 between the scaled kinetic solution and
local equilibrium. Excellent agreement exists between the scaled kinetic
concentration profiles and the corresponding local equilibrium limit
results.

The Effect of Altering Relative Rate Constants

The effect on the solution to the mass transport equations of chang-
ing the relative rate constants is considered with a simple example
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Fig. 7(A) Mineral modal abundances corresponding to the weathering of a hydrother-
mally altered phonolite host rock plotted as a function of depth after elapsed time of
100,000 yrs with the same conditions as in figure 6. (B) Mineral modal abundances are
compared with the local equilibrium result given in table 1 for pure advective transport and
the kinetic calculation corresponding to 2 my scaled by a factor of ¢ = 20.
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Fig. 8. Comparison between local equilibrium (dashed lines) and kinetic (solid curves)
calculations for concentration of solute species K+, Al,,, SiO9, and pH plotted as a function
of distance after an elapsed timesof 100,000 yrs for the same conditions as in figure 6. The
kinetic results correspond to the solution at 2 my scaled by a factor of 20.
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involving the weathering of K-feldspar. A fluid with an inlet pH of 4
percolates through a porous column consisting of 20 percent K-feldspar
and 70 percent quartz by volume. This problem has been considered
previously by Lichtner (1988). The normal reaction sequence obtained
for conditions of local equilibrium is Gbs|KlIn|(Mus)|Kfs, where the
muscovite zone forms a ghost zone with zero width in the limit of pure
advective transport (Lichtner and Balashov, 1992). This is also the
sequence obtained in a kinetic calculation for effective rate constants of
10~ moles cm~3 s~! for gibbsite, kaolinite, and muscovite and 3 X 1016
moles cm~3 s~! for K-feldspar (Lichtner, 1988). An entirely different zone
sequence can be obtained by drastically reducing the kinetic rate constant
for kaolinite and including pyrophyllite as a possible secondary mineral.
Effective rate constants of 2 X 107'6 and 10~!* moles cm™3 s~! for
kaolinite and pyrophyllite, respectively, are used in the calculation with
the rate constants for the remaining minerals the same as above. In this
case, because of the much slower rate of precipitation of kaolinite, silica
and aluminum are not removed as rapidly from solution, and the fluid
becomes supersaturated with pyrophyllite which precipitates as shown in
figure 9. (It is of no consequence here that pyrophyllite normally
forms only under high temperature conditions.) The zone sequence:
Gbs|{Kln|Pyr|Mus| Kfs, obtained in this case, apparently has no counter-
part in local equilibrium. With increasing time it might be expected that
the pyrophyllite zone would eventually disappear resulting in the normal
local equilibrium sequence. This is because as the kaolinite zone contin-
ues to grow, eventually it becomes wide enough that, regardless of the
rate of reaction of kaolinite, the fluid can nevertheless reach equilibrium
with respect to kaolinite;and the pyrophyllite zone becomes unstable and
dissolves. Suprisingly, however, this is not what happens as is shown in
figure 10. In this figure the reaction front positions are shown as a
function of time. With increasing time the pyrophyllite zone propagates
with constant width and never disappears completely. Although this
behavior is similar to that of a ghost zone, it is not know whether a local
equilibrium solution exists with pyrophyllite stable. If such a solution did
exist, it would imply that the local equilibrium limit is not unique.
Further investigation is required to determine the nature of the pyrophyl-
lite zone in the asymptotic limit.

DISCUSSION

Not all theoretical formulations of solute transport and mineral
reaction can be scaled. There are several ways in which the transport
equations may be altered to give solutions that do not satisfy scaling
properties. One possibility is initial or boundary conditions that are not
scale invariant. Flux boundary conditions, for example, are not scale
invariant. Another example is a heterogeneous unaltered host rock
containing an initial zonation pattern such as bedding planes. The widths
of the reaction zones in the unaltered rock define a length scale for the
system, and therefore the problem can not be scaled. In order for the

Fl
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Fig. 10. Positions of the reaction zone boundaries plotted as a function of time for the
same conditions as in figure 9.

transport equations to satisfy scaling properties, the initial composition
host rock must be horhogeneous and infinite in extent. Still another
example of a problem that does not scale is the presence of a water table.
It should be noted that the presence of a temperature gradient also leads
to a problem that does not scale. Multiple porosity or more generally
hierarchical porous media models probably do not satisty scaling rela-
tions. :

According to the general results presented here kinetic effects are
important for relatively short time scales for which the system has not
evolved for a sufficient amount of time to scale to the local equilibrium
solution. Of course what constitutes enough time must depend on the
type of host rock. Thus carbonate rocks would require a much shorter
time compared to most silicate rocks, because of their faster reaction
rates. A notable exception is nepheline syenite, for example, which also
dissolves rapidly.

Advantages and disadvantages of a local equilibrium description.—In the
case of pure advective transport the local equilibrium problem reduces to
a set of algebraic equations for the solute concentrations, mineral volume
fractions, and reaction front velocities (Walsh and others, 1984; Lichtner,
1991). Because of the inherent similarity between local equilibrium and
kinetic descriptions, these equations provide an attractive alternative to
the kinetic transport equations. They may be solved extremely rapidly
compared to the kinetic transport equations, even for multicomponertt
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systems. However in many cases it is found that there does not exist a
proper physical solution to these equations for the problem at hand
(Lichtner, 1991). It has been found that it is necessary to introduce
reaction zones of zero thickness, referred to as ghost zones, in order to
obtain a consistent solution (Lichtner and Balashov, 1992). In this case,
however, information is lost regarding, for example, the modal abun-
dances of the ghost zone minerals. Alternatively, transport by diffusion
must be included to obtain a complete description.

There are other cases, as well, where it appears that the limiting
solution cannot be obtained from the algebraic equations representing
the pure advective local equilibrium solution. These cases occur, for
example, if a phase is allowed to become super-saturated in the kinetic
problem without precipitating. Such circumstances do not seem possible
to incorporate in the algebraic formulation of the local equilibrium
problem.

Another major disadvantage of a local equilibrium description is that
it is not possible to determine the correct sequence of reaction zones
directly from the governing equations, contrary to a kinetic description
for which the transport equations provide a unique determination of the
reaction zone sequence. Finally for very short time spans the local
equilibrium approximation cannot give an accurate description. In such
cases a kinetic formulation of the problem is essential.

Estimating kinetic rate constants from the field. —Recent attempts to
deduce kinetic rate constants from field observations of weathering
profiles have resulted in values several orders of magnitude too low when
compared with laboratory determined values (Paces, 1983; Velbel, 1985).
These estimates have assumed that the dissolution rate of a particular
mineral in question is constant along the entire flow path and equal to its
far from equilibrium rate. This assumption may not be justified, however,
for sufficiently long flow paths and long time spans. In such cases the
affinity factor occurring in the expression for the kinetic reaction rate
must play a dominant role in determining the behavior of the solution.
The effect of the affinity factor is to reduce the dissolution rate compared
to the far from equilibrium value, becoming zero for a mineral in
equilibrium with the fluid. As a consequence, reaction need only take
place over a limited portion of the flow path to produce the change in
solute concentration observed between two points along the flow path.
The failure to appreciate the effect of the afhnity factor on the reaction
rate could therefore lead to a much smaller rate constant than otherwise
would be necessary to explain the observed change in solute concentra-
tion.

According to the results of this study, because the velocities of the
reaction fronts are determined by local equilibrium considerations and
are independent of kinetics, if the overall rate of weathering is defined as
the growth of the various reaction zones produced during weathering,
then the weathering rate defined in this manner would be independent
of kinetics. It must be emphasized, however, that suflicent time must
have elapsed for distinct reaction zones to be produced in the first place
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before these considerations can apply. For short time spans kinetics may
be very important in determining the behavior of the system.

CONCLUSION

The scaling properties of time-space kinetic mass transport equa-
tions have significant implications on their solutions for problems in
which the initial and boundary conditions are scale invariant. By scaling
the time and space coordinates of the kinetic solution, it is possible to
extract the local equilibrium limiting solution. Because scaling preserves
the amplitudes of the solution concentration and mineral volume faction
profiles, the kinetic and local equilibrium solutions are closely related.
With increasing time the sensitivity of the kinetic solution on the expres-
sion for the reaction rate becomes less and less important in governing
the behavior of the solution. A further consequence of the scaling
properties is that solutions to the kinetic transport equations belonging to
identical initial and boundary conditions, but corresponding to different
rate constants, all tend toward the same limiting solution when scaled in
time and space. This limiting form of the solution depends only on the
thermodynamic properties of the system and not on the relative kinetic
rate constants or reacting surface area. In some cases the limiting solution
may be obtained directly by solving a set of algebraic equations represent-
ing the local equilibrium transport problem. In this sense the precise
form of the rate expression is not as important to the final form of the
solution as thermodynamic data. This would seen to be an important
result, since if the solution were highly sensitive to the rate expression it
would be an almost impossible task to describe natural systems because of
their extreme complexity. Finally it was suggested that the reported
discrepancy between field and laboratory derived kinetic rate constants
may be, in part, a consequence of neglect of the affinity factor appearing
in the expression for the kinetic rate law when attempting to determine
the field based rate constant.
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APPENDIX A
Scale transformation of the non-reactive transport equation
For a function f(x, t) defined as the solution to a differential equation, the consequences
of scaling the independent variable can be deduced directly from the differential equation
itself. As an example consider the solution to the non-reactive advection-diffusion equation.
The solute concentration C(x, t; D, v) of a non-reactive species satisfies the partial differen-
tial equation

oC  8C : _9°C
— 4 v—~-D— =0, (A1)

5
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where D designates the diffusion coefficient, and v represents the average fluid velocity.
This equation has the well-known solution
X + vt
, (A.2)

2Dt

1 X — vt
C(x, t; D, v) = Cy + 5(Cy — Cu) [erfc[ } + ev*/Derfe

2 2Dt

corresponding to the initial and boundary conditions

C(x, 0; D, v) = C,, 0 < x < ™), (A.3)
and
C(0, t; D, v) = C,, 0 <t <), (A.4)

where erfc(x) denotes the complementary error function.
Applying the scale transformation of the time and space coordinates given by eqs (4)
and (5) leads to the transformed partial differential equation

aC  aC _1Da2c_0 A
at0+vaX0—0' ax?,_ . (A.5)

In addition the initial and boundary conditions are invariant with respect to the scale
transformation. Because this equation has the identical form as the original equation if D is
replaced by ¢! D and is subject to the identical initial boundary conditions, the solution
C(x, t; D, v) scales according to the expression

C(ox, ot; D, v) = C(x, t; o7'D, v). (A.6)

as is easily verified. This result may also be obtained directly from the explicit form of the
solution given in eq (A.2). The physical basis for the existence of the scaling relation is the
lack of any inherent length or time scale in the problem. The result holds only if the initial
and boundary conditions are invariant under the scale transformation. For example, if a
flux boundary condition at the inlet were used, the scaling relation would no longer apply.

This relation may be used to deduce the effect of diffusion on the concentration profile.
If a solution is known for one particular value of the diffusion coefficient D, it can be
obtained for any other value D’ (including zero) merely by scaling the time and space
coordinates of the original solution according to the relation

C(x, t; D', v) = C(ox, ot; D, v), (A7)
with
D' = ¢-'D. (A.8)

The limit o — o« is of special interest, corresponding to D' = 0, or pure advective transport.
1t follows that

lim C(ox, ot; D, v) = lim C(x, t; ™D, v)

prarent st

= lim C(x, t; D, v)
D—0

i

Coll — 8(x — v)] + C.8(x — vi), (A.9)
where 8(x) denotes the Heaviside function defined by

1 (x<0)
0x) = {1/2 (x = 0). (A.10)
0 (x<0)
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Accordingly, the pure advective limiting solution is obtained by scaling the time and space
coordinates of the solution corresponding to combined advection and diffusion. As the
diffusion coefficient tends toward zero, the solute concentration approaches a step-function
with a jump discontinuity at the salinity front. The effect of diffusion on the solute profile,
therefore, is to smear out the sharp change in concentration associated with the salinity
wave by altering the time and length scales of the system.

APPENDIX B:
Local Equilibrium

The local equilibrium approximation is defined as the limit in which the kinetic rate
constants tend to infinity. In this limit the affinity tends toward zero, and the expression for
the kinetic reaction rate approaches the indeterminate value 0 - . The kinetic rate laws are
replaced by algebraic constraints corresponding to mass action equations representing
mineral equilibria. The transport equations describing mineral reactions in local equilib-
rium with an aqueous solution can be expressed in the form (Lichtner, 1985):

% & + ; VimVi | + Z—? =0, (B.1)

where in what follows a tilde’ designates the local equilibrium limit. These equations are
subject to the constraint equations

N,
Kn ]-[l FCpm =1, (B.2)
=

representing equilibrium of the mth mineral. The reaction rates of minerals in local
equilibrium with the aqueous solution may be calculated from the mineral transport

equations
A3
c oy 3w
= Vm Pt (B.3)
or, equivalently, from the solute transport equations
= 2 -1 &%) m" B.4
= =3 0 e [ @) + 5 (B.4)

where (v™1)nq denotes the inverse matrix to the stoichiometric reaction matrix vjm, and the
subscript a runs over a set of primitive primary species (Lichtner, 1991). If the local
equilibrium transport equations are interpreted as applying separately to each reaction
zone, then additional equations are necessary specifying conservation of mass across each
reaction front (Lichtner, 1985). These equétions, referred to as the Rankine-Hugoniot
relations, are given by

QL (B.5)

(W] + Sovim Vi [

Integrating the Rankine-Hugoniot equations yields the positions of the reaction zone
boundaries, denoted by 1%t; D, u), as functigns of time.

Under a scale transformation of the time and space coordinates of the local equilibrium
transport equations, with the flux transforming according to eq (35), it follows immedi-
ately that the generalized concentration and mineral volume fraction transform according

-
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to the equations

¥i(x, t; @7'D, u) = Fy(x, t; D, u), (B.6)
and

(%o to3 07'D, 1) = $n(x, D, w), (B.7)
analogously to the kinetic field variables. Alternatively these relations can be expressed
according to

Fo(x, t; 07'D, u) = Fy(ox, ot; D, u), (B.8)

By introducing the field variable Fy 1o represent the solute concentration and mineral
volume fraction. From this relation it follows that the solution corresponding to pure
advective transport can be obtained from that incorporating diffusion by scaling the time
and space coordinates. Thus taking the limit ¢ — , the left hand side approaches the pure
advective limit, similarly to the non-reactive case. For pure advective transport in an
isothermal porous medium the transport equations representing local equilibrium reduce
to a set of algebraic equations (Walsh and others, 1984; Lichtner, 1991).

The scaling properties of the reaction zone boundaries in the case of local equilibrium
follow directly from the Rankine-Hugoniot relations. Thus the reaction front velocities
transform according to the relation

Vn(ts0”'D, w) = ¥t D, w), (B.9)
or, equivalently

9t 07'D, u) = ¥¥ot; D, u), (B.10)
in agreement with the kinetic result, as follows from eq (B.5) making use of the scaling

relations for ¥; and ¢. From the definition

i
Em_ 50

dt m? (Bll)

the scaling properites of the positions of the zone boundaries can be determined with the
result

ol¥(ts; 07D, w) = I9(t; D, w), (B.12)
or, equivalently
oliit; o7'D, u) = I¥ot; D, u). (B.13)

From these relations it follows that with increasing time the velocities of the zone bound-
aries in the case with diffusion present approach the velocities corresponding to pure
advective transport.

Single Component System

The remainder of this appendix considers the single component system discussed in
section titled The Effects of Altering Relative Rate Constants. For the general case of
combined advection and diffusion the solute concentration in the solute concentration in
the local equilibrium limit is given by Lichtner (1988):

C(x, ; D, u) = C_(x, t; D, u)(l — 8(x — [(v)) + Cegf(x — 1(v)), (B.14)
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with
_ ) 1 — e
C_(x, t, D, u) = Goe¥* + [Ceq — Coe™ T (B.15)
—e
and the mineral volume fraction is given by the relation
by(x, 6 D, u) = $78(x — Iv)). (B.16)
The position of the dissolution front is defined implicitly by the equation
it D A 16 D, v 1) == B.17
(t; D, u) + AMexp T =K, (B.17)

where K, is defined in eq (C.13). The local equilibrium solution satisfies the scaling relations
C(ox, ot; D, u) = C(x, t; a~'D, u), (B.18)
and
$y(ox, ot; D, u) = dy(x, t; 07'D, u), (B.19)

similar to the non-reactive transport equations. The reaction front position scales according
to the relation :

(ot; D, u) = ol(t; o-'D, u). (B.20)
For conditions of pure advective transport the solute concentration is given by
C(x, t; u) = Co(1 — 8(x — I(t; w)) + Cegblx — I(t; w)), (B.21)

representing a chemical shock front. The mineral volume fraction is given by eq (B.16). The
position of the reaction front is given by

- vt
N I(t; u) = o (B.22)
A

APPENDIX C
Single Component System

According to Lichtner (1988) the stationary state solute concentration can be expressed
in the form .

C(x, t; k, D, u) = C,(x, t; k, D, u)0(x — I(t; k, D, u))
+ C_(x, 5k, D, w){l - 8(x — I(t; k, D, u))], (C.1)
and the mineral volume fraction is given by the expression »
by(x, ; k, D, u) = &7 (1 — e~ 9-16kDWYg(x — 1(t; k, D, u)). (C.2)
The functions C. refer to the concentration on the upstream and downstream sides of the
front I(t; k, D, u), defined, respectively, by
Ci(x, 5k, D, u) = Gy + (Coq — C)(1 — e x5k Dl (C.3)
and

1 - ex/)\

C_(x, ; k, D, u) = Coe" + [C) — Coel™] T
’ - €

(C.49)
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The inverse length q is defined by the equation

ks/u D=0, u=z0)
q(k, D, u) = {vks/dD D=0, u=0), (C.5)

u(W—-1)/2¢D (D=0, u=0)

for pure advection, pure diffusion and combined advection and diffusion, where

4ksdD]1/2
Wk, D, u) = |1 +— . (C.6)
u
The quantity A denotes the characteristic diffusion length defined by
A= D C.7
=3 (C.7
where v denotes the fluid velocity
. ()
v=—. .
é

The solute concentration is continuous across the dissolution front with the value C, at the

front given by

(Ceq + Co/qh)e™ = Cq
(1+ 1/qn)e'™ = 1

Ci(t; k, D, u) = (GC.9)

The equation of motion satisfied by the dissolution front I(t; k, D, u) can be determined
by substituting eq (C.2) into eq (72) to give

dl_1Cq-C

V= a = qTOCeq - CO ’ (CIO)
where 7o denotes the time for the solid to dissolve completely at the inlet, given by
wv—]
0 Vs (C.11)

T ks(Ceq — Co)

As noted by Lichtner (1988) the front velocity can be rewritten in the form

B 1 v
vy = S<(T,T) K—A, (C.12)

where the quantity Ky is identical to the local equilibrium distribution coefficient for pure
advective transport defined by’

67V,
K = $C - o (C.13)
and is independent of the kinetic rate constant. The function  is defined by
Wk, D,u) -1
x( k) =1 ( ) -WD. (C.14)

TWEKD,w+1°¢

As the distance traveled by the front increases, x tends exponentially to unity, and the front
velocity approaches the local equilibrium velocity. For pure advective transport the front
velocity is constant and identical to the local equilibrium result.
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Explicit expressions for the positions of the reaction front 1(t) may be obtained for pure
advection, pure diffusion, and combined advection and diffusion by integrating eq (C.10)
subject to the initial condition

I(to) = 0. (C.15)

This gives the following results valid for t > 7 for pure advective transport, pure diffusion
and combined advection and diffusion (Lichtner, 1988). for pure advective transport the
position of the solid dissolution front I{t; k, u) is given by

1
I(t; k, u) = —(t ~ 7). C.16
(t k, u) - {t ~ 70 (C.16)
For pure diffusion I(t; k, D) is given by

It; k, D) = D(t — 7. (C.17)

2
qv2DTy

Finally for the case of combined advection and diffusion the dissolution front I(t; k, D, u)
satisfies the transcendental equation

It k, D, u)} )
—— == {t = o). (C.18)

1
(q—)\ + l)l(t; k, D, u) + )\(CXP[_,‘ X 2

Ag™To

Scaling relations. The scaling relations for the solution concentration, mineral volume
fraction, and reaction front position and velocity can be derived directly from the above
equations making use of the following property of the Heaviside function

8(ax) = 8(x), (C.19)
for any constant a, and noting that
Ci(ot; k, D, u) = Ci(t; ok, o~ 'D, u), (C.20)
‘q(ok, o~'D, u) = aq(k, D, u), (C.21)
To(ok) = a7 Iro(k), (C.22)
and
W(ok, 07D, u) = W(k, D, u). (C.23)

Under the scale transformation of the space and time coordinates given by egs (4) and (5)
that the solute concentration and mineral volume fraction satisfy the relations

C(ox, ot; k, D, u) = C(x, t; ok, ¢7'D, u), (C.24)
and g
by(0x, ot; k, D, u) = d(x, t; ok, 7 'D, u), (C.25)
in agreement with eq (39). The position of the dissolution front I(t) scales according to
I(ot; k, D, u) = ol(t; ok, 07 'D, u), (C.26)
corresponding to eq (44). The velocity of the front satisfies the relation
vi(ot; k, D, u) = v(t; ok, ¢7'D, u). (C.27)

The local equilibrium limit is obtained from the scaling relations in the limit ¢ — «. In
this limit the concentration at the reaction front approaches the value

Ceq + Co/qr

T~ &+ (1= 8C (C.28)

limCy(ot; k, D, u) =
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where
_
E=1o e (C.29)
In the limit o — o, C and ¢, asymptotically approach the expressions
limC(ox, ot; k, D, u) = Cg[1 — 8g(x — i(t; u))] + Cegbe(x — i(t; u)), (C.30)
and
limdy(ox, ot; k, D, u) = ¢678(x — I(t; u)), (C.31)

where I(t; u) denotes the position of the reaction front for pure advective transport in the
local equilibrium limit defined by eq (B.22) in app. B, and where 8; denotes the modified
Heaviside function defined by

1(x > 0)

Be(x) = {€(x = 0) (C.32)
0(x <0)

The limiting expression for the kinetic solute concentration as the scale factor tends to
infinity differs only insignificantly from the local equilibrium limit given by eq (B.21) in
appx B by the value of the concentration at the reaction front. In the limit k ~» o, £ — 1 and
the two expressions are identical.
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