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Abstract Modeling reactive transport in porous media,
using a local chemical equilibrium assumption, leads
to a system of advection—diffusion PDEs coupled with
algebraic equations. When solving this coupled system,
the algebraic equations have to be solved at each grid
point for each chemical species and at each time step.
This leads to a coupled non-linear system. In this pa-
per, a global solution approach that enables to keep
the software codes for transport and chemistry distinct
is proposed. The method applies the Newton—Krylov
framework to the formulation for reactive transport
used in operator splitting. The method is formulated
in terms of total mobile and total fixed concentrations
and uses the chemical solver as a black box, as it only
requires that one be able to solve chemical equilibrium
problems (and compute derivatives) without having to
know the solution method. An additional advantage of
the Newton—-Krylov method is that the Jacobian is only
needed as an operator in a Jacobian matrix times vector
product. The proposed method is tested on the MoMaS
reactive transport benchmark.
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1 Introduction

The simulation of multi-species reacting systems in
porous media is of importance in several different
fields: for computing the near field in nuclear waste
simulations, in the treatment of bio-remediation, in
CO, sequestration simulations, and in the evaluation of
underground water quality.

This work deals with numerical methods for solving
coupled transport and chemistry problems. The trans-
port of solutes in porous media is described by par-
tial differential equations of advection—diffusion type,
whereas multi-species chemistry involves the solution
of ordinary differential equations (if the reactions are
kinetic) or nonlinear algebraic equations (if local equi-
librium is assumed). After discretization, one is led
to a system of nonlinear equations, coupled by the
unknowns for all chemical species at all grid points.

After the influential paper by Yeh and Tripathi [46],
operator splitting methods, where transport and chem-
istry are solved for separately at each time step (pos-
sibly iterating to convergence), became the methods
of choice. Some representative papers where operator
splitting methods are used are [4, 21, 29, 38, 39, 41].
Operator splitting methods are easy to implement, and
the splitting errors can be controlled by carefully re-
stricting the time step. On the other hand, the time-step
restriction can become their main drawback, as it can be
difficult to get the fixed point iteration to converge for
more difficult problems.
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More recently, global methods have become pop-
ular, due to the increase in computing power now
available. In this approach, the full non-linear sys-
tem is solved in one step, usually by some form of
Newton’s method. Most papers use the direct substi-
tution approach (see [14, 17]), where one substitutes
the chemical equations in the transport equations. On
the other hand, the problem can also be put in the
form of differential algebraic equations (DAE), en-
abling the use of powerful software (see [11]). Finally,
the chemical equations can be eliminated locally, and
a system involving transport equations, with a source
term coming from the reactions, has to be solved. This
approach is taken in [25, 26], where, additionally, a
reduction method leads to a smaller system. Most of
the papers quoted above employ a Newton method for
solving the nonlinear system at each time step, with the
difficulty that the Jacobian matrix has to be computed,
stored, and factored. This can become problematic for
large problems, and Hammond et al. [17] have used
the Jacobian-free Newton—-Krylov method, where the
Newton correction is solved for by an iterative method.
The Jacobian is only needed through the computation
of a directional derivative. The method keeps the fast
convergence of Newton’s method, while only requiring
Jacobian matrix—vector products, and these can be ap-
proximated by finite differences.

The method presented in this paper is a global
method where the chemical equations are eliminated
locally, leading to a nonlinear system where the trans-
port and chemistry subsystems remain separated. Thus,
the residual can be evaluated by calling separately
written transport and chemistry modules. The system
is then solved by a Newton-Krylov method, and it
will be shown how the Jacobian matrix—vector product
can also be computed by the same module. Thus, the
main contribution of this paper is to show that a global
method can be implemented while still keeping trans-
port and chemistry modules separated. This property
will be referred to as using “black-box solvers.” As the
chemical equilibrium equations are not substituted in
the transport equations, the transport and chemistry
parts of the nonlinear residual are easily identified, and
can each be computed by calling on standard solution
modules.

An outline of the paper is as follows. In Section 2, the
chosen model is explained, and the methods used for
solving the (non-reactive) transport part and the chem-
ical equilibrium system are detailed. Section 2.3 shows
how we obtain the coupled model. Couple formulations
and coupling algorithms are the subject of Section 3,
beginning with a review of existing methods, while our
approach is presented in Section 3.2. Numerical results,
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in particular, experience with the MoMaS benchmark,
are shown in Section 4.

2 Reactive transport equations

In this work, the transport of several reacting species
in a single phase flow through a porous medium is con-
sidered. The species can react both between themselves
and with the porous matrix. In this section, the numer-
ical methods used to solve the individual subsystems of
the coupled problem will be described.

2.1 Transport model

The transport of a single species through a porous
medium (a domain Q c R, with d = 1,2 or 3), with
porosity ¢, in a known Darcy field u, subject to dis-
persion and molecular diffusion, follows the linear
advection—dispersion equation

$ 4 LO=q o, (1)
where
L(c)=V - -(uc)—V-(DVc)

is the transport operator and ¢ is a source term. The
diffusion—dispersion tensor D is given by

u;u;

D =d I+|ul(a E@)+a (I — Ew))), Eju)= Iu_lzj
where d, is the molecular diffusion coefficient and o,
(resp. ;) is the longitudinal (resp. transverse) disper-
sivity coefficient.

In this work, we restrict ourselves to a one-
dimensional problem, so that the transport equation
over a bounded interval 2 =]0, L[ can be written as

0 0 0
¢_C+_ —D—C+uc =q, O0<x<L, O0<t<T,
ot ax

0x
()

where the porosity ¢ and the diffusion—dispersion coef-
ficient D can both depend on space. Because the flow
is assumed compressible, the velocity u is taken to be a
constant.

The initial condition is c(x, 0) = co(x) and, in view of
the applications, the boundary conditions are a Dirich-
let condition (given concentration) c(0, ) = c4(¢) at the

left boundary (x = 0) and zero diffusive flux a_c =0
X
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at the right boundary (x = L). More general boundary
conditions could easily be accommodated.

2.1.1 Discretization in space

We treat the space and time discretization separately,
as we will use different time discretizations for the
different parts of the transport operator.

For space discretization, a cell-centered finite-
volume scheme will be used, see, for instance, [13]. The
interval [0, L] is divided into N, intervals [xl_l, X; +1]
oflengthhl,wherexl =0, XN+ =L.Fori=1,. N,
denote by x; the center and Xi+1,2 the right end of

element i. Finally, denote by ¢;, i = 1, .., N the approx-
imate solution in cell i.
Equation 2 is written in the form
ac  dg
A 3
¢t =4 ®)

0
where the flux ¢(x, ) = —Da—c + uc has been split as
X

ac
the sum of a diffusive flux ¢; = _DB_ and an advective
X

flux ¢, = uc.
Equation 3 is integrated over a cell [xi_1/2, Xiy1,2[,
giving

dC,‘
¢ihiE + Pairt + Paint = Paict — Pait = hiqi,
i=2.....N,. (4)

The flux approximations required to close the system
are provided by finite differences. The diffusive flux
needs a value for the diffusion coefficient, which is
taken as the harmonic average (as done in mixed finite
element methods):

Cit1 — Ci
Pairs = =Dy (h—1> , ®)
l+§
with
2D;Djyq
Di+% —l)i+—Di-H, D% —D], DN&’+§ —DNg and
h; + h;
i = %

For the advective flux, an upwind approximation is
used, so that (assuming u > 0) Paip1 = UC;

These approximations are corrected to take into
account the boundary conditions, both at x = 0 and at

x = L. The semi-discrete system can be summarized by
the finite dimensional system

M@—l—Lc:q—l—g, (6)
dt

where ¢ € R now represents the vector of cell concen-
trations, L € RM¢Ns is the matrix form of the transport
operator, M € RVNeNe is a mass matrix accounting for
variable porosity and mesh size, g € RV is a given
source term, and g € R represents the effects of the
boundary conditions.

2.1.2 Time discretization

Let us denote by Af the time step (taken constant for
simplicity) used to discretize the time interval [0, 7] and
denote by ¢! the (approximate) value of ¢;(nAr). The
first and most straightforward alternative is to discretize
Eq. 6 by the backward Euler method, see for instance
[3]. This is the method that is used in Section 3 to keep
the description simple, but it is not the recommended
method, as it leads to an overly diffusive scheme.

Better alternatives are obtained by exploiting the
structure of the transport operator and by using differ-
ent time discretizations for the advective and for the
diffusive parts. Specifically, the diffusive terms should
be treated implicitly, and the advective terms are better
handled explicitly.

If this idea is applied directly to Eq. 6, the resulting
fully discrete scheme is only stable under a Courant—
Friedrichs-Lewy (CFL) condition uAt < max; h;. As
this may be too severe a restriction (some of our ap-
plications require integration over a very large time
interval), an alternative is to use an operator splitting
scheme, as proposed by Siegel et al. [43] (see also
[20, 31]). In this work, splitting is used only within
the (linear) transport step, but recent papers by Kacur
et al. [16, 22] apply splitting directly to a transport with
sorption model by solving (analytically) a nonlinear
advection step, followed by a nonlinear diffusion step.
This is different from operator splitting as used in
geochemical models, as the chemistry terms are solved
for together with the transport terms.

The splitting scheme works by taking several small
time steps of advection, controlled by a CFL condition,
within a large time step of diffusion. The scheme has
been shown to be unconditionally stable, and has a
good behavior in advection-dominated situations.

More precisely, the time step At will be used as
the diffusion time step; it is divided into M time steps
of advection Af, such that At = MAt., where M > 1.
The advection time step will be controlled by the CFL
condition. Equation 3 will be solved over the time step
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d
[¢*, "] by first solving the advection equation ¢a—j +

0
B_(MC) =0 over M steps of size Af. each, and then
X

ac 0 dac
Iving the diffusi ti —+—(—D—)=
solving the diffusion equation ¢ a7 + 8x( 8x) q

starting from the value at the end of the advection step.

P (c?m_c”) 0 2
; u =0, i=2,.
At hi—12
m+1 1
cpm c, ("

Adbvection step The interval [f", "] is divided into
M intervals [/*"7, *"t1], m =0, ..M — 1, where *° =
", "M = "+l Denote ¢! as the approximate con-
centration ¢ at time " and ¢"° = ¢". The advection
equation is discretized in time using the explicit Euler
method to obtain

M1, (7

Diffusion step The diffusion part is discretized by an

implicit Euler scheme, starting from C?-,M .
D, 1 Di+l D, . 1
o - Atc?_"'l + | pihi + AL+ 2 At C;H'
hi-y hi-&—l hi_1
2 3 4
D,
_ h#f Attt = g™ - qibiAr, i=2,... Ng—1
i+1
®)

As above, two equations accounting for the boundary
conditions must be added.

2.2 Chemical equations

The chemical model is described in this section. In
this study, we assume a local chemical equilibrium at
every point, which means that the chemical phenomena
occur on a much faster scale than transport phenomena.
This is a common modeling assumption for reactive
transport in porous media, at least when the only reac-
tions considered are aqueous phase and sorption reac-
tions (these are “sufficiently fast” reactions according
to Rubin [34]). This would not be the case if mineral
dissolution was taken into account, as these reactions
typically need kinetic models.

Consider a set of N, chemical species (X))
linked by N, reactions

N5
E l)in]'(:O, i=1,...,Nr,
j=1

where v is the stoichiometric matrix. Following Morel
[32], we distinguish between component and secondary
species by extracting a full rank matrix from v. Com-
ponent species are a minimal subset of the species such
that the other secondary species can be written in terms
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of them (in a unique way). Each secondary species gives
rise to a reaction that expresses how it is formed in
terms of the components, and to a mass action law
that gives the value of its activity in terms of the com-
ponent activities. Similarly, each component gives rise
to a conservation equation, expressing how the given
total concentration of such a component is distributed
among the component itself and the secondary species.

Additionally, in the context of reactive transport, it
is required to know how the species are split between
those that are in solution and those that have been
adsorbed on the solid matrix (in this paper, we do
not take precipitation into account). We thus introduce
(with, obviously, N, = N. + Ny + N, + N,)

— Mobile componentsc;, j=1,..., N,

— Fixed componentss;, j=1,..., Ny

— Mobile secondary species x;, i =1,..., Ny
— Fixed secondary species y;, i=1,..., N,

We have identified the name of the species with their
concentrations, and we assume an ideal solution (ac-
tivities and concentrations are identified). Mobile sec-
ondary species x can be expressed as linear combi-
nations of mobile components while secondary fixed
species depend on both mobile and fixed components.
Therefore, the mass action laws are written as

.., Ny, )

where K,; and K, are the equilibrium constants, and
S;j, Aij, and B;; are the entries of the stoichiometric
matrices S € RNV 4 ¢ RV*Ny and B € RN*V,
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Mass conservation for each component is expressed
in the form
c+STx+ATy=T, s+Bly=Ww, (10)
where T is the total concentration of the mobile com-
ponent jand W; is the total concentration of the fixed
component j (7 and W are vectors of size N. and Nj,
respectively). In the case of ion exchange, the second
mass conservation equation is simply B’y = W, and W
is the cationic exchange capacity of the porous matrix
(see Appelo and Postma [2]). As will be seen later, in
the context of coupled transport and chemistry, 7 is
given by the transport model and W is constant. In a
closed chemical system, 7'; would be part of the data
(total concentration of the components).

Due to the wildly different orders of magnitude of
the concentrations that are commonly encountered, the
chemical problem is reformulated by using as main
unknowns the logarithms of the concentrations. This
has the added advantage that concentrations are auto-
matically positive, and has become the standard way
to solve the problem [28]. An additional advantage
has been pointed out by Samper et al. [41]: by taking
the logarithms of the concentrations as unknowns, the
Jacobian of the nonlinear system is symmetric, and with
a proper choice of the component species, it can be
shown to be diagonally dominant, and thus, nonsingu-
lar. The symmetry can also be seen in Eq. 16 below. Let

Is

logu be the vector with entries log u;, where u; are the
entries of vector u. Equation 9 can then be rewritten as
a linear system

logx =log K, + Slogc
logy =log K, + Alogc+ Blogs (11)

The nonlinear system of Egs. 10 and 11 forms what
will be called the chemical problem. In the sequel, it will
be assumed that this problem always has a (positive)
solution (c, 5), for all feasible values of the data T and
W. This is true in our simplified setting because the
chemical equilibrium problem is a consequence of the
minimization of the Gibbs free energy, which can be
shown to be convex in the absence of minerals (see
[42]).

To solve the chemical problem, a variant of Newton’s
method is used. As is well known, Newton’s method
is not always convergent, unless the initial point is
sufficiently close to the solution. However, and this is
especially true in the context of a coupled code where
the chemical problem will be solved repeatedly, it is
essential to ensure that the solver “never” fails. We
have found that using a globalized version of Newton’s
method (using a line search, cf. [23]) was effective in
making the algorithm converge from an arbitrary initial
guess. In order to get a smaller system, the secondary
concentrations are eliminated, and the system to be
solved involves only lc =logc € R and Is = logs
RY:. Define the function H : RVe+Ns — RNAN: by

I le\ _ (exp(c) + ST exp(log K, + Slc) + AT exp(log K, + Alc + Bls) (12)
exp(ls) + BT exp(log K, + Alc + Bls),

where the notation exp(v) for a vector v means the
vector with elements exp(v;), then Eqgs. 10 and 11 are
equivalent to:

6)-(3)

This is the nonlinear system that is to be solved for Ic
and /s, given T and W. The secondary concentrations
can then be computed from Eq. 11.

When solving the coupled problem, the distribution
of the species between their mobile form and their
fixed form will be needed. The individual concentra-
tions must still be solved for, but they are intermediate
quantities. Once the component concentrations have
been computed as described in the previous paragraph,

one can compute for each species its mobile part C; and
its fixed part F; by
C=c+ S"x, F=ATy. (14)
Note that, by definition, the relationship 7= C+ F
holds.

In the formulation to be presented below, it will be
convenient to represent the mapping from the vector
of total concentrations to the vector of fixed concentra-
tions. This mapping, denoted by v, is defined by first

solving the chemical problem Eq. 13, then computing F
by Eq. 14. More precisely,

¥ : RM — RV

15
T y(T)= A"y, )
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where Eq. 13 is first solved for /c and Is, then y is
computed by Eq. 11.

It is important to keep in mind that computing v (7)
means solving the chemical system (plus some simple
computations), as this will be the most expensive part
when evaluating the residual of the coupled system (see
Eq. 26 in Section 3.2).

As this will be useful later on, the computation of
the Jacobian of v is outlined here. Assume v (7)) itself
has been computed, so that the nonlinear system Eq. 13
has been solved. First, the Jacobian matrix of H should
also be computed as part of the solution process. This
is almost certainly needed for solving the chemical
problem if Newton’s method is used. Differentiating
Eq. 12 leads to:

I lc\ _ (diag(exp(lc)) 0
Is) 0 diag(exp(ls))

ST AT\ (diag(x) 0 S0
t\o BT 0 diagy))\4a B)

(16)

where diag(v) is the diagonal matrix with vector v along
the diagonal. Then, by an application of the implicit
function theorem (see for instance [35]), and by differ-
entiating Eq. 11, there comes

R ,lc_ll
,MD_AmMWMBwHQJ><J'

It should be stressed that the Jacobian of H is needed
to computed the Jacobian of ¢ (inverting it is straight-
forward, as this will usually be a small matrix). This
may prove problematic in practice for several reasons.
First, the chemical solver may not give access to the
Jacobian, even if it is used internally. This is a limitation
to the “black-box” approach. Second, for more realistic
chemical models, including non-ideal chemistry, and
taking minerals into account, computing the Jacobian
may be much more difficult than the fairly simple com-
putation outlined above. As a last resort, one could
compute the Jacobian by finite differences, but it will be
argued in Section 3.2 that, for this particular problem,
the analytical computation is more efficient.

(17)

VST VISl

ot ot w)) = 8
T = Cij + Fij, i=1,...,Ng j=1,
Fi,:zl//(Ti,]:)T, i=1,...,Ng

2.3 Coupled transport and chemistry

The starting point for the coupled model is the fol-
lowing set of equations for the total, mobile, and fixed
concentrations of each component

aC; oF;
¢p—L+¢—L+L({CH)=0 j=1,...,N.
ot ot
(18)
8Wj_0 T N
Y =0, J=1,..., Ny

These equations can be derived from the individual
conservation equations by standard algebraic manipu-
lations, see, for instance, Yeh and Tripathi [46]. It is the
formulation given in the benchmark definition [6], see
also [11, 37]. The second equation is obvious, as W; was
taken as a constant (at each point in space).

Taking into account the relation 7; = C; + F;, j=
1,..., N, noted above, the first equation of the system
is equivalent to

aoT; .
¢8_t/_|_L(Cj)=O j=1,..., N, (19)

where T is the total concentration, C; is the total
mobile concentration, and F; is the total fixed concen-
tration for component j.

From now on, L will denote the discretized transport
operator, as defined in Eq. 6. Each unknown concen-
tration depends on both the grid point index and the
chemical species index. We will use a notation inspired
from Matlab. For a concentration u;;, where i € [1, Ng]
represents the spatial index and j € [1, N.] represents
the chemical index, we shall denote by

— u.j the column vector of concentrations of species j
at all grid points

— u;. the row vector of concentrations of all chemical
species in grid cell x;

The unknowns will be numbered first by chemical
species, then by grid points. Thus, all the unknowns for
a single grid point are numbered contiguously.

The coupled problem is obtained by putting together
Eq. 19 above with the definition of the chemical so-
lution operator v, defined in Eq. 15 (the subscript T
denotes transposition):

N
(20)
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This system is then discretized in time to obtain the
fully discrete coupled nonlinear system. In this work,
we restrict to a simple backward Euler scheme with
constant step size, noting that other, more sophisti-

Ol FE L ey

At At S
Tl(;-H — CZ'+1 + FZ-H
F;L:H _ Iﬁ((Tl"H)T)T i

cated strategies are obviously possible (in particular, an
adaptive step-size is essential for efficiency). Denoting
time indexes by a superscript, the following system is
obtained

1)

This is the system to be solved at each time step.

3 Formulation and coupling algorithms

The formulation of reactive transport seen above gives
rise to a large system of nonlinear equations. For com-
plex problems, its solution will require a large amount
of computer time, which makes it important to choose
an appropriate method. In this section, several for-
mulations and approaches that have appeared in the
literature will be reviewed.

Thanks to the relationship 7= C + F, it is easy to
eliminate one of the three variables, and this leads
to different formulations for the coupled problem, de-
pending on which variables are kept in the transport
equation. We keep the system continuous in time, as
it makes the notation somewhat lighter, but the same
manipulations can obviously be done at the discrete
level too.

According to Saaltink et al. [37], see also Salignac
[40], one can derive three main formulations from the
system given in Eq. 20:

— Formulation (TC) where T is the principal variable
and C is the transported variable

oT.;
Ma_t] + L(C:j) =§&.j

(22)
This is the formulation used by Erhel et al. in [9, 11],
as it lends itself best to a DAE-type algorithm. It
is not convenient for our purpose, as the transport
equation then involves both 7" and C, and is thus
not easily used with an existing transport solver.

— Formulation (TT) where T is the principal variable
and 7 is the transported variable

oT.;
Ma_t]‘i‘L(T/)"‘L(Fj) =& (23)

This seems to be the least satisfactory formulation,
as the transport operates on the fixed species, and
for this reason, it will not be considered further.

— Formulation (CC) where C is the principal variable
and C is the transported variable

M2 i ey =
a1 at D=8

(24)
This is formulation 4 in Saaltink et al. [37], and is
the formulation chosen below. It has been reported
that this formulation is the least suitable for use in
an operator split algorithm because C and F are
used at different time levels (to compute the data
for the chemical problem). When this formulation
is used in a global method, this should not matter
as much, as the iterations are run to convergence,
and both values should eventually get close to their
limits.

Formulation (CC) will be used in the rest of the
paper because it takes the form of a standard trans-
port operator, with a source term coming from the
chemical part. Its structure is closely related to the sys-
tem describing single-species transport with sorption,
as seen, for instance, in [16] or [21], with the main dif-
ferences that the unknown is a vector of concentration
and mostly that what plays the role of the sorption
isotherm is the implicitly defined function ¥ introduced
in Eq. 15.

3.1 Review of former approaches

At each time step, the system given by Eq. 21 (one
transport equation for each component and one chem-
ical system for each grid point) forms a large nonlinear
system, whose size is the number of components times
the number of grid points. This system has tradition-
ally been solved by a sequential two-step approach,
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as reviewed below (cf. [46]). However, this method
suffers from several defects: it may severely restrict
the step size to ensure convergence, and if used non-
iteratively, it is only first order in time, which may
introduce additional errors (cf. [4]). Due to its quadratic
convergence rate, Newton’s method would be an ideal
candidate for solving the system. On the other hand,
a practical difficulty has to be reckoned with: Newton’s
method requires the solution of a linear system with the
Jacobian matrix at each iteration step. In realistic situ-
ations, it will not be possible to store, much less factor,
the Jacobian matrix. As will be seen in Section 3.2, this
difficulty can be overcome by resorting to an iterative
method for solving the linear system.

3.1.1 Sequential approach

The sequential approach consists of separately solving
the chemical equations and the transport equations.
The method has been used in numerous papers: see, for
instance, [46], and also [4, 21, 29, 37], or [30]. At each
iteration, a transport equation for each component is
solved first, with a source term given by the (change in)
fixed concentration at the previous iteration. This total
mobile concentration will be added to a total fixed con-
centration computed in the previous iteration, to obtain
the total used as data for solving a chemical problem
at each grid point. These steps are then iterated until
convergence.

In the geochemical literature, this is known as an
operator-splitting approach (usually called standard it-
erative approach, or SIA), but it is more properly a
block Gauss—Seidel method on the coupled system,
as each subsystem is solved alternatively. The method
is quite appealing, as it is easy to implement starting
from separate transport and chemistry codes, and can
provide good accuracy if implemented carefully, as
shown in the references above. As will be seen below,
these advantages can be retained in the Newton—-Krylov
framework.

The standard non-iterative approach (SNIA) is the
case where only one iteration of the method is carried
out at each time step. In that case, splitting errors can
become important, and the method is not really suitable
for difficult problems.

The SIA approach does not suffer from splitting er-
rors if the tolerance is small enough, but it may require
a small time step to obtain convergence in the case of
stiff problems. The main drawback of the method is
thus that the size of the time step is used to control
convergence, and not based on the physical character
of the solution.

@ Springer

3.1.2 Direct substitution approach

As computing power increased, it was recognized that
the operator splitting methods of the previous sections
could not satisfactorily handle difficult problems, and
more tightly coupled methods came to more wide-
spread use.

The direct substitution approach method consists in
solving for the individual concentrations of the com-
ponents, that is substituting Eqs. 10-11 in Eq. 1 (this
can be done explicitly, as in Hammond et al. [17], or
implicitly, as in Krautle et al. [25, 26] or Saaltink et al.
[37]). It is also possible to reformulate the problem
as a differential algebraic system (DAE), and to take
advantage of the high-quality software available for
such problems, as in Erhel et al. [10, 11], or [8]. A high-
performance parallel implementation is described by
Hammond et al. [17], using a Jacobian-free Newton—
Krylov method (see Section 3.2).

The main advantages of this approach are to avoid
the errors caused by the separation of operators, and to
allow fast convergence independently of the time step,
but its principal drawback is the need to form and to
store the Jacobian matrix especially for a large prob-
lem. Moreover, sometimes, it may be difficult to cal-
culate the exact derivatives for geochemical processes
especially when precipitation phenomena or kinetic
reactions are taken into account.

The size of the system can be made smaller by means
of a reduction method, cf. Kriutle et al. [25, 26], and
[18]. The reduction method makes a change of variables
in the chemical system, so that a set of decoupled
transport equations is first solved, leaving a smaller
nonlinear system, that is still solved with Newton’s
method.

3.2 A Newton—Krylov-based fully coupled method

As was already mentioned in the previous section,
Hammond et al. [17] have used a Newton-Krylov
method for solving the system obtained from the DSA
approach. Substituting the chemical equations in the
transport operator is the most straightforward way of
formulating the coupled problem but leads to a system
where chemistry and transport terms are mixed, and
makes it virtually impossible to separate the transport
and chemistry modules. However, this separation is
seen as one of the important advantages of the operator
splitting approaches.

By coupling the formulation given in Section 2.3 with
the Newton-Krylov framework, a strongly coupled
method that can be implemented by keeping transport
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and chemistry separate is obtained. Thus, the chemical
equations are not directly substituted in the transport
equation, but the function ¥ introduced previously in
Eq. 15 is used to represent the effect of chemistry.
Different formulations could be adopted depending on
the choice of unknowns (refer back to Section 3). In this
work, both the total mobile and fixed concentrations,
and also the total concentrations (though they could
easily be eliminated), are chosen as main unknowns.

Even though this method may be more expensive
than the methods based on DSA, its main advantage
is to make it possible to treat chemistry as a black-
box, even in the Newton-Krylov context. This may
be important, as chemical simulators are becoming in-
creasingly sophisticated.

Recall (Eq. 21) that the nonlinear system to be
solved at each time step is

(M+AL)CIT +MF! T =b"; =0, j=1,..., N,
T+ _ on+l _ gt =0, ’
FiH =y ((phT)" =0, i=1,...,N,

(25)

where b? = MC?', + At g't' + MAtF! is known.
Denoting by G : R¥3VeNe — R3NeNe the function

. . hn.
c ((M+ArL)Cj+ MF, b:,j)jelwJ
G| T]|= T—-C-F ,
F o \1\T
(F= v (1)) )HLNg]
(26)
the nonlinear problem to be solved at each time step is
Cn+1
G(Z) = 0, where Z denotes the vector | 7"+!
Fn+1

Recall that, at each step of the “pure” form of
Newton’s method for solving G(Z) =0, one should
compute the Jacobian matrix J = G'(Z*), solve the
linear system (usually by Gaussian elimination)

J8Z = —G(Z"), (27)

and then set Z**! = Z* 4+ §Z. In practice, one should
use some form of globalization procedure in order to
ensure convergence from an arbitrary starting point. If
a line search is used, the last step should be replaced by
Zk1 = Zk 4 1 §Z, where A is determined by the line
search procedure.

The main drawback of the method for large-scale
problems is again the need to form, and then factor, the

Jacobian matrix. For coupled problems such as the one
studied in this paper, there is the additional difficulty of
simply computing the Jacobian: the numerical methods
for transport and chemistry are quite different, and it
is even possible that the simulation codes have been
written by different groups.

The Newton-Krylov method (see [23, 24], and [17],
to which our work is closely related) is a variant of
Newton’s method where the linear system that arises at
each step of Newton’s method is solved by an iferative
method (of Krylov type). The main advantage of this
type of method is that the full Jacobian is not needed;
one just needs to be able to compute the product of the
Jacobian with a vector. As this is a directional deriva-
tive, this leads to the Jacobian free methods, where this
product is approximated by finite differences. However,
for some problems, it may be possible to compute
the needed directional derivative exactly. As will be
seen below, this is the case for our coupled problem,
provided the Jacobian of the chemical problem can be
computed. This is both cheaper and more accurate.

The main contribution of this paper is to show that
the formulation given above lends itself to an imple-
mentation of Newton’s method that allows to keep
the two codes separate. This is in keeping with thte
philosophy set forth in the review paper by Knoll and
Keyes [24] that a Newton—-Krylov solver can often be
made by wrapping a classical split-step solver. This is
what is being done here, as the formulation to which the
Newton-Krylov method is applied is the one used for
operator splitting. Additionally, it will be shown below
that the Jacobian may even be formed in block form,
provided the individual codes provide their Jacobians
(this is obviously easier for transport than for chem-
istry), and this obviously carries over to the Jacobian-
vector product.

At this point, it is appropriate to add a few comments
on the size of the problems envisioned. The exam-
ples used in this work are small-scale, one-dimensional
problems. They can hardly be called large. On the
other hand, we believe they are representative of the
problems that will be encountered in more realistic
applications. For such problems, in two or three space
dimensions, involving tens or hundreds of thousands
of grid points and several tens of chemical species,
the nonlinear system will indeed be very large, and a
method like that of Hammond et al. [17], or like the
method presented in this section, will be necessary.

A Krylov subspace method (see, for instance, [23])
is used to approximately solve the linear system in
Eq. 27. The linear iterates are drawn from the Krylov
subspace, K; = span{rg, Jro, J?ro, ..., J/"rp}. In the
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GMRES method (see [36]), the iterates are defined to
minimize the residual [|/§Z; + G(Z)||, over K. Other
methods, such as Bi-CGSTAB [44] or QMR [15] could
be used as well.

As the linear system is not solved exactly, the con-
vergence theory for Newton’s method does not ap-
ply directly. However, the theory has been extended
by Dembo et al. [7] to the class of inexact Newton
methods, of which the Newton-Krylov methods are
representatives. The main consequences of this analysis
are summarized below.

An important issue in such methods is the stopping
criterion for the inner linear iteration. A stopping crite-
rion of the form

IJ8Z + G(ZM)|| < mll G(Z5)|| (28)

in this context, as the initial iterate is usually 0. The
choice of the forcing term n; should strike a balance
between two conflicting goals:

— Keep the (local) convergence of Newton’s meth-
ods.

— Avoid over-solving, which is taking too many linear
iterations when still far away from the nonlinear
solution.

The first goal will tend to require a small value for
nk, while the second one obviously tends to make
larger. It has been shown (see theorem 6.1.4 in [23])
that, provided 7, is bounded away from 1, the inexact
Newton’s method will converge, and that superlinear
convergence obtains if n; goes to zero faster than
|G(Z%)||. Based on this result, the strategy proposed
by Kelley in [23] (after the choice in [12]) computes 7y
as

e =y |G ZIP/NG(Zi-DII?, (29)

where y € [0, 1] is a parameter (the value suggested in
[23]is y = 0.9). Safeguards are added to this choice in
order to prevent n; from becoming too close to 1, or
too small. It is also necessary to globalize the algorithm,
and this can be done using a line search, just as in the
classical Newton’s method.

The other main practical advantage of the Newton—
Krylov methods is that they do not require forming
the Jacobian matrix. All that is needed is the ability
to compute the product of the Jacobian matrix by an
arbitrary vector, in order to enlarge the Krylov sub-
space. This matrix—vector product can be interpreted as
a directional derivative. This means that, for complex
functions, G, it may not be necessary to compute the
Jacobian, at the cost of one extra evaluation of the func-
tion itself. It turns out, however, that in our case, this

@ Springer

trade-off is not advantageous. Indeed, it is well known
that the most expensive part of the evaluation of G is
the solution of the chemical problem at each grid point.
On the other hand, it was shown above that computing
the Jacobian of  is actually cheaper than computing
¥ itself (once ¥ has already been computed), as it only
involves the solution of a linear system (see Eq. 17),
whereas computing  itself requires the solution of a
nonlinear system.

It will now be shown how the method can be im-
plemented, given modules for transport and chemistry.
The first ingredient needed is the computation of the
residual, which is evaluating the function G defined in
Eq. 26. Given a vector Z = (i), Z is first split into
its three components, and each sub-vector is regarded
as a N, x N, matrix, as in Section 2.3. Then, G(Z) is
computed by block:

— For the transport block, the transport operator is
applied to each species C.;, with a source term

F.j—F ] .

T,forjzl,...,Nc(F de-
notes F at the previous time step).

— The second block is the trivial computation T —
C-F.

— The third block is the solution of the chemical
problem at each grid point: F.; — ¥ (T;.), for i =
1,...,Ng.

given by —M

This shows that the first block will only need transport
related-quantities, whereas the third block will only call
chemistry-related ones. Actually, these are the same
computations that would be needed for implementing
an operator-splitting method.

As far as the Jacobian matrix—vector product is con-
cerned, and using the computation in Section 2.2, the

. . v, .
action of the Jacobian on a vector v = 5? ) (that is the
’

directional derivative of G in the direction of the vector
v) can be computed as

((M + Al‘L)UC:,j + MUF:,])

ve jell.N]
Jlor ) = —vc + VT — VR . (30)
UF (vFi,Z - UTi,Z(l//./(T[?:))T)iG[LnX]

Even though it is not used as such in this work, it is
valuable to examine the structure of the Jacobian. As
the previous computation shows, the Jacobian also has
a natural block structure. Recall that the unknowns are
numbered by species at each point in space. Then, the
block corresponding to the action of L can be written
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Table 1 Physical parameters
Darcy velocity 2.78107° m/s
Diffusion coefficient 5.56107° m?/s
Length of column 0.08 m
Nc Ng 57 Mesh size 0.0002 m
’ Duration of experiment 1 day
Time step 720 s
2NcNg [ = T
) composition of the effluent from a column containing
a cation exchanger is simulated. Initially, the column
contains a sodium—potassium-nitrate solution in equi-
3Nc Ng librium with the cation exchanger. The column is then

Nc Ng 2 Nc Ng 3 Nc Ng

Fig. 1 The block structure of the Jacobian matrix

using the Kronecker product (see for instance [19]) as
A = (M+ AtL) ® I. Then, the Jacobian matrix is

A 0 M
J=|-1r 1 -I]), (31)
0 —w/(TT) I

where W/(T) = diag (¥/'(T{.),.... ¥’ (T](,g’:) is the
Jacobian of ¥, and for each i =1,..., Ng, I/II(TLT:) is
a small N.-by-N, block. The structure of the Jacobian
is illustrated in Fig. 1, for the case Ny =10, N, =3.
It is a 3 x 3 block matrix, each bock being of size
Ng x N.. We can clearly see the different parts of the
Jacobian: the transport part in the upper left corner
has three diagonals corresponding to the Kronecker
product structure (remember that L is tridiagonal), and
the chemistry part at the bottom has ten 3 x 3 blocks.

It would, in principle, be possible to compute and
store the Jacobian matrix according to Eq. 31 as a
sparse matrix, and to compute the matrix—vector prod-
uct using a general-purpose routine. The advantage of
the method given in Eq. 30 is that the structure of the
Jacobian is fully exploited, which leads to a much more
economical computation.

4 Numerical results
4.1 Ton exchange

The following example of advective transport in the
presence of cation exchangers is adopted as a first test
case comparison of both approaches. The example is
used in the documentation of PHREEQC-2 [33] as
Example 11. The one-dimensional simulation problem
describes a column experiment where the chemical

flushed with three pore volumes of calcium chloride
solution, so that an equilibrium state with calcium and
chloride is reached. Calcium, potassium, and sodium
react to equilibrium with the exchanger at all times. The
flow and transport parameters used for this example are
presented in Table 1, and the initial and injected con-
centrations are listed in Table 2. The cationic exchange
capacity for the exchanger is 1.1 mmol/I.
The chemical reactions for this example are:

Na' 4+ X~ = NaX
Kt+X =KX

(|

= X" = -CaX

an + 2Ca 2,

with NaX, KX, and CaX; as (sorbed) complexes, and
X indicates an exchange site with charge —1.

4.1.1 Comparison with PhreeqC

Figure 2 shows elution curves, which is the evolution
of the concentration of the various species at the end
of the column, as a function of time. The sorbed potas-
sium and sodium ions are successively replaced by cal-
cium. Because potassium exchanges more strongly than
sodium (as indicated by a larger value of log K in the
exchange reaction), sodium is released first, followed by
potassium. Finally, when the entire concentration has
been released, the concentration of calcium increases
to its steady-state value, the potassium is displaced
from the exchanger, and the concentration in solution
increases to balance the Cl™ concentration.

Table 2 Initial and injected concentrations

Component Cinit Cinflow
Ca 0 0.61073
c 0 12107
K 2.010~* 0

Na 1.01073 0
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Simulation par mallab
Approach glob & Sep

Concentration

0 0.5 1 1.5 2 25 3 3.5

Volume du pore

x 1073 Simulation par PHREEQC
L Na ||
1.2 cl
—K
1 Ca ||
0.8 1
0.6 1
0.4+ 1
0.2 / 1
0 ‘ . . .
0 0.5 1 1.5 2 25 3 35

Fig. 2 Elution curves (concentrations at the end of the column) vs time, for the problem of Section 4.1. Left: global method, right:

PhreeqC reference

Both the sequential method and the global method
described in Section 3.2 have been applied to the test
case described in Section 4.1. Both the computational
demands and the accuracy of the solutions will be
compared.

As can be seen in Fig. 2, the results obtained are
close to those computed by PhreeqC. One can still
see differences both in the location and amplitude of
the peak in potassium concentration, and in the region
where the three curves cross. These results are also
comparable to those obtained by Xu et al. [45].

- Comparison of CPU time
1200 T T T
-+ Global approach

—=— Spliting appraoch
—4 herative Splitling appraoch

1000F

g

600F

CPU time (second)

=
i=]

200

number of nodes

Fig. 3 Computing time for three methods applied to the ion
exchange of Section 4.1
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4.1.2 Performance of the method

The CPU times for the iterative splitting, non-iterative
splitting, and global approaches are compared in Fig. 3.
The CPU time required for each method is plotted
vs the number of the nodes of the grid. As expected,
it can be seen that the non-iterative method requires
much less CPU time than the iterative methods. On the
other hand, the global approach described in the paper
requires less time than the iterative splitting, at least for
the simple chemical system considered here.

For a single time step, the iterative splitting approach
requires between 20 and 27 iterations on average.
The number of fixed-point iterations increases with the
number of nodes in the grid. On the other hand, the
number of Newton iterations for the Newton—Krylov
method is less than six, independent of the number
of nodes. The number of Krylov iterations for each
Newton step, however, does increase with the number
of nodes. We go back to this issue in Subsection 4.2.1.

4.2 The 1D “easy” MoMaS benchmark

The global and the splitting approaches will now be
applied to the 1D easy GDR Momas Benchmark, as
described in the introductory paper to this special issue
[6], see also the original description in [5]. Let us just
recall that the model is a one-dimensional column,
made of two different media: the part in the middle is
less conductive but more reactive than the surrounding
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Global approach with NKM
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Global approach with NKM
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2
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8 os
=
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Fig. 4 Concentration of all components at times ¢ = 10 (a) and ¢ = 50 (b), for various mesh resolutions

medium. The chemical system has five components
(four mobile components and a fixed component), and
seven secondary species. The equilibrium constants
vary over 50 orders of magnitude, and the stoichio-
metric coefficients can be as large as four, making the
problem highly non-linear.

First, results showing the evolution of the component
species at various times, and using several spatial and
temporal resolutions, are shown in Fig. 4a. The left
figure is at time ¢ = 10, the right one at ¢ =50. As
expected, the concentrations remain almost constant

Global approach with NKM

14 T T T T
x1
x2
1.2+ x3 1
x4

xi concentrations at x=2.1

0 50 100 150 200 250 300 350 400
Time

(a)

in the middle (reactive) region. Meshes with 220, 440,
660, and 880 points have been used, and in each case,
the time step is chosen as 0.9 times the limit fixed by
the CFL condition. For these early times, the depen-
dence on the mesh is not very strong. Elution curves
(concentrations at the end of the column as functions
of time) are shown in Fig. 5, first for ¢ going from 0
to 400 (Fig. 5a), then for ¢ going from 4,900 to 5,300
(Fig. 5b). The elution curves show that the correct
limiting behavior is reached before the leaching phase
begins.

Global approach with NKM

7 T T T T
x1
x2
6 x3 [
x4
& 5f ]
)
x
®
2 ar 1
0
<
Il |
o
c
o
o
% 2
1,
0 ! ! ! SN . .
4900 4950 5000 5050 5100 5150 5200 5250 5300
Time

(b)

Fig. 5 Concentration of the components X1 and X4 at the end of the column (x = 2.1) as a function of time. a t =0 to t = 400. b

t =4,900 to t = 5,300
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Global approach with NKM Global approach with NKM x10"? Global approach with NKM
0.35 T T T : 0.19 - T T : 45 T T T :
—— TD3-220| —— X3-220| —C1"220
- 0.188 al ]
& 03f
ol 0.186
w 350
§ oz § o018 o
s x x 3
€ ® 0182 ®
g oy ] § 25
3 T o018 s
° T 5 2
2 0.15p @ o
2 g 0178 g
2 3 8 15}
5 oaf o 04176 5
[}
s 0174 T
8 o.0sf
= 0.172 0.5
0 . . . . . . . . 047 . . . . 0 . . . .
0 400 800 1200 1600 2000 2400 2800 3200 850 900 950 1000 1050 1100 5000 5200 5400 5600 5800 6000
Time Time Time
(a) (b) (©

Fig. 6 Elution curve (concentrations at x = 2.1 as function of time). a Total dissolved concentration C3. b Component X3. ¢ Species C1

The output results required in the benchmark def-
inition are included. Most were obtained with a 220-
point mesh, which may not be sufficient, as will be seen
below. It has not yet been possible to obtain results with
a finer mesh resolution for significantly longer times.

Figure 6a—c (elution curve for the total dissolved
concentration of component X3 and species C1) show
an oscillation pattern that has been observed by other
groups working on the benchmark. These oscillations
have been convincingly explained by V. Lagneau [27]
as being due to the interaction of the very rapid chem-
istry and the discrete nature of the grid. They are a
discretization artifact but appear independently of the
method. They can be reduced by using a more refined
grid.

-6 Global approach with NKM
1 2x 10
C1-220
——C1-440 |
2 1 —— C1-660
= —C1-880
< 0.8} 1
c
2
£ o6 1
c
]
S 04} .
o
O 0.2f .
0 I I 1
0 0.05 0.1 0.15 0.2
Space
(@)

Figure 7a, b shows the influence on the mesh, by
showing the concentration over a small spatial region,
for time ¢ = 10. The concentrations are computed with
four meshes of increasing resolution. The peaks in the
solution are not resolved satisfactorily for the coarser
mesh, with 220 points, but 660 (and better 880) points
give the correct location and amplitude. Even if the
method as it is currently implemented cannot yet be
considered as robust, its ability to locate these solution
features with reasonably coarse meshes was seen as one
of its strong points. Unfortunately, this may still not
be enough to eliminate the oscillations shown in Fig. 6.
This issue is currently being worked on, part of the diffi-
culty being that increasing the mesh resolution may not
be sufficient. As the nonlinear problem becomes more

Global approach with NKM
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Fig. 7 Concentration profiles. a Species X1, ¢t = 10. b Component S, t = 10
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difficult, it may be necessary to increase the maximum
number of iterations allowed to make sure the Newton—
Krylov method has converged.

4.2.1 Performance of the method

The benchmark was intended to be a difficult test for
numerical methods, and this is indeed the case. On the
average, more than 20 Newton iterations are required
at each time step, and between 15 and 40 conjugate
gradient steps are needed at each nonlinear iteration.
Figure 8 shows a typical time step: the solid curve
shows the cumulative number of conjugate gradients
(alternatively, the number of matrix vector products),
and the dots represent the nonlinear iterations.

Statistics for a single time step are gathered in
Table 3, for three different mesh resolutions (220, 440,
and 660 points). They give the number of non-linear
iterations (NNI) for a (typical) time step, and the total
number of linear iterations (NLI) accummulated over
the whole Newton iteration. The number of nonlinear
iterations depends only weakly on the mesh resolution,
whereas the number of linear iterations increases with
the mesh resolution.

Table 3 shows that the solver spends a large propor-
tion of its time in the linear solver, despite the adaptive
choice of the forcing parameter (Eq. 29). Moreover, the
number of linear iterations for each nonlinear iteration
also increases with the mesh resolution. Actually, this
is expected, as the solution of the linearized prob-
lem includes the solution of the transport operator,
which has an elliptic-like structure, so that its condition

Residuals
>
B

0 50 100 150 200 250 300
Iterations

Fig. 8 Iterations

Table 3 Statistics on Newton and GNRES iterations, for one
time step

Mesh 220 Mesh 440 Mesh 660
NNI NLI NNI NLI NNI NLI
25 494 18 551 25 636

NNI number of nonlinear iterations, NLI number of linear
iterations

number grows like the square of the number of grid
points. This problem could be alleviated by using a
suitable preconditioner that would make the number
of iterations independent of the mesh resolution (a
domain decomposition preconditioner could be used as
in [1]). As noticed by Hammond et al. [17], designed
a matrix-free preconditioner (so as to be compatible
with the Newton-Krylov framework) is a challenge.
Natural choices would exploit the block structure of
the Jacobian, the simpler ones being based on block-
Jacobi or block Gauss—Seidel. Operator-splitting as a
preconditioner has also been proposed in [17]. These
possibilities are currently being explored, exploiting the
block structure of the Jacobian, and the results will
be reported in a forthcoming paper (Taakili and Kern,
unpublished manuscript).

5 Conclusions—perspectives

In this paper, it was shown that a global method
for coupling transport with chemistry based on the
Newton—Krylov technology can be implemented while
keeping the transport and chemical solvers separated.
The results shown are promising: it is possible to effi-
ciently solve geochemical problems using the method,
although there remain several issues that need to be
addressed.

— The first is to run test cases on more demanding
configurations, where the method can be expected
to show its full potential. This includes the other
MoMasS test cases, with a more complex chemistry
model, and also an implementation of the method
in two and three dimensions.

— It will then certainly be necessary to explore the
question of how to precondition the Jacobian, in
order to reduce the number of Krylov iterations.
An natural avenue is to reuse the operator splitting
methods, as proposed by [17]. A similar study is
being carried out for a related, but simpler, model.

— The results reported above used a fixed time step,
which was clearly insufficient for the large interval
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of integration. To successfully solve difficult prob-
lems like the benchmark above, it will clearly be
necessary to use adaptive time stepping.

— A more difficult problem will be to take into
account precipitation—dissolution phenomena in
the chemical model. As the models are non-
differentiable, this makes it more difficult to em-
ploy Newton’s method.

As was apparent from the numerical experiments,
the method also shows some limitations. The most
serious is its high cost, as each evaluation of the residual
involves the solution of a chemical problem at each
grid point. The fact that the method has two levels
of nonlinear iterations means that it may not be as
robust as other global methods based on a single level
of iterations. Finding a good preconditioner may not
be a limitation, but most strategies will involve solving
more transport problems, which will also incur a high
cost.
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