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Abstract

Species on porous media surfaces exposed to agqaehui®ns
can still not yet be determined unambiguously. ifffleence of these
ambiguities on contaminattansport needs to be understood. Here
methods of multicomponent chromatograjsing presented that allow
to visualize the effectef the ambiguities. The Riemann problem is
solved to a large extent based the mathematics of non-linear
hyperbolic differential equations, toee theproblem is handed over
to thecomputer. Since thereby the computational efforts are kept
compatible with the corgponding limitations ina chemical
laboratory, this method has been used decades in chemical
engineering. The method illustrated for vamus multicomponent
isotherms, e.g. the one undeénly surface comlexation modelsas
implemented in the MINEQL family of pgrams.

1 Introduction

Methods todetermine the surface species on porous media in
contact with aqueous solutions have be@aproved for more than
three decades. But still ownderstanding of the surface chemical
processes ibased on models the applicability of which we cannot
predict (Lutzenkirchen 2012Rayne et al. 2013). This is of particular
concern when it comes to assessing the long-$afaty of high-level
radioactive waste repositories: We neecvaluate how our lack of
understanding will affect our predictions of contaminant migration.
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2 1 Introduction

Two principally different paths havebeen taken to predict
contaminant migration. On both paths transport equatomerning
contaminantmigration are solved. Path 1 uses numerical solution
techniques for equations thegpresent our understanding of the
processes as closely reasonably achievable. Path 2 uses analytical,
I.e. mathematicalsolutions of simplified versions of the transport
equations that we think represent general migration features.

Path 1

Affordable computers have become capable of numericalbgating
transport of several chemically amdiblogically interacting compo
nents in porous media. Examples such components are nDel
ions, ligands, nutrientand contaminants. Many transport codes have
been writen, as is evident from reviews.g. Kirkner and Reeves,
1988; Reeves and Kirkner, 1988nzelbach et al., 1989). Numerical
difficulties and long computation times habeen adressed in
various ways, depending on the choafethe geochemical problem.
Subroutines, e.g. PHREEQE, MINEQL other members of the
MINEQL family, such as MINTEQ, GEOCHEM or HYROQL, are
called at each timstep to establish chemical elijpiium in all nodes
(Walsh et al., 1984; Cederberg et al., 19B&vak et al., 1988;
Berninger et al., 1991). When appliedih@ nodes sequixilly, these
subroutines need more than 90% of the computdime. Soon
excessive timas spent in these subroutines when the number of
nodes is increased, unless ttmmputer code has been vectorized,
thus being able testablish chemical equilibrium in all nodes at once
(Vogt, 1990).

Path 2

Lichtner (1992) and Ortoleva and cowork€t987) went inanother
direction, avoiding superer mini-supercomputers by introducing
very poten@approximations in the transport equations for the case of
mineral precipitation and dissdlan.

This paper will deal with the visualization of the 1-dimensional
migration of chemically interacting water constituents disregarding
diffusion and dispersion. Here path 2 usesmtahematics of non
linear sets of hyperbolic partial differtgad equations irone space co
ordinate and time (Lax1973) and makompaent chromatography
(Helfferich and Klein, 1970; Rhee et al., 1989). Batigthematics
and chromatography provide tools that help us understaddlesign
numercal calculations as well as experiments when transjgort
purely adective and dominated bgdsorgion. The procedure to
calculate the concentration profile is simpler and faster thanthth
above metioned numerical models, largelybecause general
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properties of the solution of the probleame derived from mathe
matics rather than left to be found by the computer (Schweiah, et
1993). This way of proceeding has been used successfullyfielthe
of chemical engieering (Helfferich,1967; Hwang et al., 1988) and
environmental sciences (Charbeneau, 1981, 1988; Brz01Q,
Prigiobbe, 2012a, 2012b, 2013). The gmse of this paper i®
demonstratés potential in the latter field, i.e. to predict contaminant
waves propagating through porous media.

After having introduced thigansportequations (Sect. 2) and the
concept of theentered wave&Sect. 3), this paper will

(1) present several solution technigdes hyperbolic differ
ential equdons, i.e.
analytical integration of the transport equations
(Sect. 4),
the use of the coherence conditigSect. 5)
the use of the Jacobi matrix of the isothe(®sct. 6)
and

(2) use this method temonstrate the relationship that exists
between the chemical intetaans on the one hands rep
resentedy some adsotn isotherms and complex for
mation constants- and on tbther hand the caenration
profiles (Sect. 7)In this context, isotherms will be pre
sented for

ligand exchangéSect. 7.1.1),

surface bridge formatio(sect. 7.1.2),

adsorption on variable chargsurfaces at low ionic
strength(Sect. 7.1.3)

The properties of the wavem systems with some of
these isotherms wibbe used to solve the system of trans
port equaons by matrix inversioSect. 7.2), introdung

a generakedchemical component, tHeiemann imariant
(Sect. 7.2.3)

(3) exemplify the presented analyticablutions with two-
component systeniSect. 8) because redibleadsorption
data have been compiled mostly for such systems.

Chemists have been using speciation pddge by side with nu
merical speciation models to gain insight itibe influence of com
plex formation constants in batch systems ésge chapters 4.1 - 4.3
in thetextbook by Stumm and Morgan (1981)). Multiqgoonent
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chromatography provides ussanilar graphical tool to help us un
derstand the influence of thermodynamic stamtson advective
transporand to give us information we cannot get from a numerical
transport model. This will be the topicthie second and third part of
this paper.

2 Transport Equations

Migration of Ny chemicalcomponents A( = 1, 2, ..., ) in
porous media is deribedby a set of [y mass conservation laws. In
the alkence of p@pitation or dissolution of solids th@nservation
laws have the form:

%{mq(x.twcj(x,t)} +£(vw-D§)q(x,t):o (=1 No »

G is the soluble andj(Is the adsorbed concentration of compomg,nt

The constantg= 0.3, y,< 0.5 m/yr and D = 0.16 (@yr) t + 5 & are
the voumetric fraction of water, thBux of water and the hydrody
namic dispesion/diffusion coefficient of Ain the porous medium,
respectivelyr (= 0.3) isthe tortuosity,s (units: m) is the dispersivity
(= L /100, L (units: m) being the lengtlver which transport is caleu
lated) and is the speed of the coentration F(for definition ofg¢ see

(9) below).

The adsorbed concentrati@@) of component Arelaxes to the
value (]Z* the so-called "isotherm”, with relaxation timee; (first
order Kinetics)

9 cixty =L {Cllen & s o)) -G} (=1, 2, ..., No)
ot €j )

(2)

This paper willdiscuss cocentrations profiles when the flux of
wateris typically v, < 0.5 m/yr. Adsorption kinetics is then fast
enough and has a negligible effect on the slofjle profile ife < 1
week (see appendices, 12 A. 1 a)dTherefore C= q will be as
sumed henceforth.

When also the diffusive term in (1) meglected, the calculated
corcentration profilewill lack smoothness, but are expected te re
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main unchanged otherwise. Because this research aims at finding
trendscaused by chemical interactions, the assumption D = 0 seems
appropriate.

The resulting set of partidifferential equations is hyperbolic and
-due to the isotherm;Qcy, ¢, ..., Go)- Non-linear in theconcentra
tions g.

%ﬂpq(x,t) +Cj(CLC, ..., OO} + vwaiq(x,t) =0 (=1,2 ..., Ng
X

3

Without giving the proofs, the nesections will present two basic
phenomena in hyperbolic systems,

the centered waveits representatiom concentration space
and its transport equation, and

thespeedor retardationof the centered wave.

The first method presented below for finding solutions of the
transport equations is connecteith the equation defining the speed
of a concentration. These definitions are called "coherence condi
tions" in chromatography. Three further solution methods wifiriee
sented thereafter.

3 Riemann Problem and Centered Waves

Solutions of (3) can be built from so-called "centereaves"
(Helfferich and Klein, 1970).

There are two types of centered waves (Lax, 1973):

Rarefaction waves (called "diffuse waves" ahranatogra
phy). They meet the differéal equaions (3). This ighe type
that will mostly be dealt with here.

Shocks (called "self-sharpeningaves" in chranaography).
They meet the Rankine-Hugonialations (see (24) below),
which are calledintegral coherence conditions" in cimate
grgphy (Helfferich and Klein, 1970).
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Temple (1983) has shown that shoeksl rarefaction waves €0
incide in twotypes of multicomponent systems with constant-ad
sorption parameters and negligible soluble complefdgswhen ad
sorption follows a multicoonent Langmuir isotherm (see (489
low) or (2) when adsorption can be describedragxhange process
(see (41) below).

Centered waves are the solution of the Rienmanoblem, i.e. the
response of theystem (3) to a single abrupt change of the cbaimi
compodion of the incoming water ("feed") (from toc). Let x = 0
be the initiallocation of this concdration jump, and assume that the
pore water flows in positive x-giction:

1t a
c(x,t:O):{ c+ forx=0 (preequilibrant) ' c{ }

c. forx<0 (feed) CNo (4)
An example of centered wavesantwo-component system (with
components M and H) is shown in figure 1.

When there is no competition (figure 1a), H changes without M
noticing it and vice versa. Thus each wave corresptmads compe
nent.In figure 1b, M and H compete for saiption sites, and the
concentrations of both M and H change in both waves.

The general structu@ the solution of the Riemann problem has
beendescribed and proved by Lax (1957): The discontinuity (4) de
velops into a sequence of constsiates sepated by centered waves
(figure2). The former are regions of fixed concentration. The heavy
lines in figure 1 are the boundaries of the constant statesofben
tration changes fromy, to ¢+1 across th&-wave, either contimusly
as shown in figure 2 for the 1-, Zand Ny-waves, which are
rarefaction waves, or abruptly as shown for thg-{Nwave, a shock.
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Fig. 1: Centered waves in a system with component M and H (a) without
and (b) with competition between M and H for adsorption sites. The con-
centration jumpc_- ={M_, H_} -> c4+ = {M4, H4+} at time t = O develops
into two waves.

Because all wavesriginate from the initial discontinuity at x = 0,
for times t > 0 the vector of concentratiangoes not degend on X
and t sepately, but instead on the speed, the ratox/t.

c(xt) = (&), 5)

A concentrationc(x,t) = h(g) is constant on the line x/t & the
"characteristic" (light or heavy lines in figure 2).
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Fig. 2: In a system with fj\components an initial discontinuity— c, decom
poses with time into a fan ofgj\toncentration changes (centered waves, bounded

by heavy lines), separated by N1 constant stateg, ¢, ...,CNp-1. Notation
has been chosen according to conventions in mathematics.

It is helpful to represent the concentration proéet) = h(g) in
corcertraion space (called "composition spadey Helfferich and
Klein (1970)). As an example, figure 3 shows the two wa¥dgyure
1b. The concentration space has two axes, the M- and-¢has. The
constant state. = {M _, H} is connected byhe 1-wave to the middle
statec; = {M 1, Hi}, which in turn is connected by the 2-wave to the
corstant state+ = {M ., H.}.

By definition of the 1-wave, poifM 1, Hi} moves on the 1-wave
when point {M., H.} is varied and point {M, H} remains fixed.The
definition of the 2-wave is similar: It is the curvewhich point {Mq,
H1} moves when point {M H_.} is shifted in {M, H} space while
point {M., H,} stays immaile.

The shapes of the waves reflect the chemical interactiotisein
sygem. Infigure 2 they are artrarily represented as lines. The cor
respondence between their shapethedhermodynamic catants is
the subject of the second part of this paper (sections 7 - 9).
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Fig. 3: Waves (shown arbitrarily as lines) and constant states (points (-), (1) and
(+)) in 2-dimensional composition space. Point (-) has the coordinate${M

(+) has the cordinates {Ms, H+}, and (1) repreents {M, H1}.

For centered waves, thieansport equations (3) become ordinary
differential equations. With

3

1
- X

the partial derivatives become total derivatives

0 _0d_1d
ox Ox®&E t&,
9 _0d __xd=-.8d
ot ot & t2 &€ t &, (6)
and with these the transport equations can be written as
Monn-SH=0 (=12 .. N

0 ¢ : (7)

where the primalesignates the derivative with respectétaand the
vedors of soluble and adsorbedncentrations, respectively, are-de

fined as
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@) | [ Hih@) | | Cilexn)
h@E) = = e b HMOE) = =
o® | L onelxit) Hnoh(®) | L Choletx.t)) 1. (8)

4 Analytical Integration of Transport Equations

If the sum of the adsorb@dmponent concentrations i a con
stant, e.g. a (constamultiple of the concentration of adsorption
sites,

No
g Hk=n Xt
-1 )
or
No :
g Hk=0
=1 ,
the sum of the set of equations (7) is simply
(U -5 h
Vw _ =0
o 9™ (10)

Possible solutions are

&=V together with H;=0 (non-retarded wave)
0 : (11)

No ,
g hk =0 (retarded waves)
=1 } (12)

When the number jNof components two, the waves are readily
plotted as contour line$he réarded wave is the line on which K
h, is constant, the non-retarded wave is the line on whichaany
sorbed componentoncentration His constant. High level pro
gramming languages, e.g. Mathatica (Wolfram Reearch, 1992),
make it easy tplot contour lines of these conserved quantitigs#h
h, and H, in concentration space (see figure 8 below).
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5 Coherence Conditions, Rankine-Hugoniot Ration
and Retardations

Solving (7) fo = &(h) we get

g=Ww 1 = Vw 1 =W 1 (=1, .., No
¢ L aH 9 g adE e, g
?h ¢ dh/ck @ dy

The directionablerivative dH/dh (i.e. the change of the adsorbed

corcentration acrosthe wave, dkide, divided by the change of the
soluble cooentration, dfide) depends on the wave along whichsit
evaluated. Let k bthe index for the k-wave, then for any k€1k <

No)

Ge=Vw 1 (=12 ..., No
¢ dhy/cki : (13)

The k solutions of (13), i.e. of

HY/E _dHJ _  _ dHn/&

dhy/ck  dhocg dhng/ck, (14)
or of

% = @ = ... :m

Chl Chz ChNo (15)

are also solutions of the set of conservation laws({%) has been
given thename "differential cherence condition" in chromatography
(Helfferich and Klein, 1970).

If the isotherms arknown functions i{h) = G*(c) of the vector
of soluble concefraions, the directional derivative is

Noi
1 Ohj

d - bt}
& & (16)
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and (14) can be integrated. Theoots of (14) are the k solutions of
the Riemann problem.

Theprocedure will be illustrated for the general two-component
sysgem. We start with the diffential coherenceondition in the form
(14) and then apply the chain rule (16) to expang:d/d

HY/E _ cHJE

chi/cE  chycE (17)
cHYGE _ 0Hy , OH1 d/cE _ dH1 , 0H1chy

dhy/c€ ohy  ohy dhy/ck ohy ohy dh; (18)
HoE _ oHz2 ch/ck | 0H2 _ 0H1dhy, 0H1

chyE  ohy chycE dh,  ohy chy Ohy (19)

With (18) and (19) equation (1Becomes a quadratic equation for
dhy/dhy with known coeffcients p and q

2
(%)+p@+q:0
1

dh (20)
where
oH:
ohs
oH:
ohy (21)

There are two roots of (20), one for the 1-wave and the &her
the 2-wave

@:_Ei p2_
dy 2 4 . (22)

High level programming languages such as Mathematica
(Wolfram Research, 1992) cdre readily used to calculate the waves
from (22). Thesdanguages give analgal functions h(h;) when
they can find them, and interpolating polynafaiotherwise.
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Similarly, the speed of the k-wave can be calculated, oncscthe
lutions (&) = {h1(§), (), ..., hno(€)) are known. Accordhg to
(13), thespeed of the k-rarefaction wave is by a factor (the so-called
“retardation”)

Re=1+ 1 i/ (=12, ... No

¢ dhy/cEk (23)
smaller than the pore water velocity/y. Note that (23) states that all
components A(j = 1, 2, ..., N) experience the same retaida R
in the k-wave.

Rarefaction waves are not the only typesolution of the mass
conservation law (3). The existence of the second tigpeshock, will
not be proved. Thproof of the existence of shocks (Lax, 1957) will
be replaced by a plausibility argument.

Suppose that theetardation R(h) decreases with increasing eon
centrationh. When the rear end of a wave (ggint c. of the 1-wave
in figure 2) has a lower retardation than its front (poinn figure 2),
the rear will travel faster than the fronThe corresponding
concentratiomprofil ¢(x, t) will become steeper (sharper) as the wave
proceeds. A concentration wave steepens umtést deeloped a dis
continuity and is just about to break (in the sense a wedee
breaks). From then on all concentrations travel with the sgeed.
The resulting concentration discontinuity is the shock. Contragy to
concentratiorwave, the water wave developsybed this point and
actually breaks, i.e. the portions in the upper patti@fvave ovdake
the ones in the lower pafthe shock wave travels with a speed given
by the conservation of mass across the shock.

Appendix 12 A. 3shows that the mass balance involves finite
rather than infinitesimal quantities, if the wavaishock (Lax, 1973).
The speed of the shock is given by the Rankine-Hugoriaitae

Ge=Vw  AG _=Ve 1 oVl (=12 .. No
®ag+ic) @ ,,180 @R
¢ ¢ Ag . (29)

where the symbal denoteshe change across the k-shock. In math
ematics the symbol || || is often usexdlead ofr. Using h and H in
stead of c and C*
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o =Ww 1 (=12 ..., Ng
¢ 1+lﬁ
@ Ah; . (25)

The set of equations

AH; _AHy —  _AHno
Ah;  Ahp Ahng (26)

is called"integral coherence condition" in chromatography and is
used to calculate the concentratiomangesah; across the shocks
(Lax, 1973).

The third solution method is based on dlaeobi-matrix of the ad
sorgion isotherms G(c). It is the mostgeneral of the solution
methods.

6 The Jacobian and the Retardation Matrix

Becausehe adsorbed concentrationg +HC';(c) depend only on
the solble comentrations, the derivatives with respext could be
re-written usingthe chain rule (16). The transport etjoa (7) be
comes then

N x o
Vw - §) h]f _€ Oaﬁhk:o
¢ ¢ & 0o : (27)
or -after division by, and rearrangement- in matrix form
{l+1Kdh =Vwlp
® P& . (28)

1 is the identity matrix and¢kd is composed of the partial deriwes
of the adsorption isotherm§*C
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601 aCNo
1..0
1= 1 Kdc) =
0..1
dCno dCno
| oo don, . (29)

I will introduce the matriR(c), the "retardation matrix":

1+ 1Kd(c) =R()
0 . (30)

With the abbreviation (30) the system of transgotidions (7)
can be written as an eigenvalue problem

RhE) =Y 1 hE)
o8 .

(31)
This set of equations is satisfied when
phy=Yw _1_
¢ &(h) (32)

is an eigenvalue of thetardation matriR evaluated at the poimt =
h in composition space, and whiehthe change df, is parallel tahe
right eigenvector correspondinggh)

h*=vyr(h), (33)
| will normalizer such thaty = 1.

The systen{7) is genuinely nonlinear, and the directionrois
chasen such that it points in the direction of decreasing retardation

r gradp(h) <0
h'gradp(h) <0 (raefaction wave), (34)

where grad =4/dc,, 0/0¢y, ...,0/0cNo} IS thechange across the wave.
For example, in figure 3 the change of the retardati@niatdirection
to c; is gradpi(c), where the index op indicates the wave. Fur
thermore, if -as assumed in figure 3- thaves are lines;1(c.) and
h,'(c.) are vectorshat are cahear with the 1-wave. If the retardation
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p1(h1) of the 1-wave decreases framto c;, the vetors ry(c.) and
h,'(c) point fromc. toc;.

For a shock, the retardation increases in the directibh of

h' gradp(h) >0  (shock).

The retardationsj(c) will be aranged indecreasing order. None
of the retardations is smaller than 1:

P12 p=2p3=...2pno2 1, (35)

According to(33) the changéy' of a concentratioihy is parallel
to the k-eigenvectar at pointhy. The k-rarefaction wave is tlegtity
of all such changes. It follows from thtae k-rarefaction wave is the
curve that is everywhere tangentiakfoand can beonstructed with a
suitableRunge-Kutta method (Zielke, 1993). Such methods are in
corporated in the high level computer languag®sS (Application
Visualization System (International AVS Centeoy) Mathematica
(Wolfram Relearch, 1992). AVSconstructs the k-wave on the
computer screen aftéaving received the vector fieldg(c) and the
user has pressed the corresponding button.

7 Topology of Waves for Multicomponent Langmuir
Type Isotherms

7.1 Isotherms

Three Langmuir typesotherms will be presented here, i.e. for
multicomponent ligand ekhange, for adsorption visurface bridge
formation, and for surfaceomplexation on variable charge irfteres
at low ionic stregths. Let (Nbe the number of adsorbed spedgs
Ay, ...,ANo - The adsorptiveond is described by a set of pardene
that arecalled "separation faers" a,; or adsorption constants,k
depending on the adsorption pess.

7.1.1 Ligand Exchange



17 7.1.1 Topology of Waves: Ligand Exchange Isotherm

Unlike ion exchange processes, in whitte surface bond is
electrestatic, surface complexatioa a predominantly chemical pro
cess. Complex formation -be it in solution or sanfaces- can bind
electrically charged speciésgether even if they carry charges of the
samepolarity. The suiace complexation process changes the charge
of surfaces. Thus, supenosed on the fixed chemical bondas
electrostatic bond thaaries with the surface coverage, and thus with
the composition c of the solution (Dzombak and Morel, 1990).

Separation factorsijy describe the exchangen the sulace of
ions or ligands fand A (see figure 4):

AN+A =A +AN, (=12 ...,Noj#N) (36)

Fig. 4: Schematiof surface when adsorption process is ion or ligand exchange.
Sites are occupieddy components (ligands)1AAo, .., Ang repreeried by the
numbers 1, 2, ..., N The adsorbed concentians are described by isothe(41).

If cy or the sum of the soluble concentrationghsf adsorbing species is eon
stant, the istherm dgenerates to a Langmuir typetiserm (46).

An example is the surfacsomplexation of heavy metal cations
M2+ on hydrous ferric oxides (M = Ag?*, Ca&*, CrOH*, Cuw?t,
Ni2+, Pi#*, SE* and of SrOH) (Dzombak and Morel, 1990). Let X
represent the crystal lattice thfe oxide and O the layer of oxygen
atoms at the solid-liquid interface. The surfapecies involved in the
adsorption process are then X-OH a@®M*. The adorption reac
tion is

X-OH + M?% = X-OM* + H", (37)

Using the symbol € for the concentration of the surface species
A; and ¢for the concentratioof the adsorbing species, the mass ac
tion law for the adsorption reaction (36) is

*

c,*(c):ajN% g, (=12 .. No 38)
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Note thatayy = 1. Because all surface sites are assumed to be
filled, the sumof the surface species concentrations is equal to the
concentration of surface sites

No * No
Cl(C):XT‘%\I—NzalNQ (39)
or
Cn= Xt
CN No
z aiN G
=1 . (40)

After replacing G*/cy in (38) with the expression in (40) we get the
isotherm

i@ =xr MI (=12 ..,Ng
Z aiNa
a - (41)

Note that the selectivity coefficienigy depend on thelectric sur
face charge. If the latter is variable Has on metal oxides- it will be

separated from the's and the selectivity coefficientll be written as
ajN P A2with

PL=ep (), 42)

Az is the change of the charge of the adsorbing layer L (in urtite of
electric charge, e E/Na, Na being the number of particles in a mol)
in the surface complexation reactiatz is + 1 forreaction (37) in
volving the exchange of a doubly charged metal ion with th&pro
Wi (unit: Volt = Joule/Coulomb) is the electrostatic potential in the
adsorbing layer L othe oxide, F (96485 Coulomb/mol) is the Fara
day-constant, R (8.31 Joule/(mol K) is the generakgastant and T
(unit: K) is the absolute temperature.

The electrostatic correction factor is a simple function of plavat
ionic strengths and small metal concentrationsolution. In section
8 it will be shown that the isotherms assumpadicularly simple
form in that case.



19 7.1.2 Topology of Waves: Surface Bridge Formation Isotherms

7.1.2 Surface Bridge Formation

Adsorption can be the formation of bridgedween asurface h
gand A, and components;Asee figure 5). The surfaspeciedAy is
called "empty surface site".i& thus not counted among theg Bur
face speciesnA;.

Av+A =ANA, (=12 ..., No (43)
2 1 2 1 1 2 1

1 1
N N N N N N N N N N N
| | | | | | | | | |

Fig. 5: Schematic of surface when adsorption process is badgation between
acomponent (ligand) § and components AA2, ..,Ano The surface siteAn
are sometimes called "empty". Adsorption isothermsbfatge formationae of
Langmuir type (46).

On oxidesAy is sometimes written as X-OFn exampleis the
surface complexation of & = Ba*, Ca&*, Sr2t (Dzombak and
Morel, 1990)

X-OH + M? = X-OHM?%. (44)

Adsorbed species concentrations are proportional”fp &hd ¢
(thesoluble concentration of the adsorbed species). The mass action
law here is

Ci©)=kCnG, (=1,2 .., Noj=N) (45)

The concentration G of theempty sites can be expressed as a frac
tion of the total concentration of sites, similarly as it was done in (38).

No . . No
,ZCl:xT:CN(l-'-Z ijJ)
=1 |

=1
1N

or
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CT\I :L
No

1+ Zl kig

£ N
Thus

d@:ng%Lf (=12 ..., Noj#N)

1+ z k|C|’

%N , (46)

Again, the adsorption constantsdepend on the electrostapioten
tial in the adsorbindayer, and when the potential varies due to the
variation of the surfaceharge, its effect will be separated from the

constant and the adsorption constant will be writter) &%

The concentration G, of empty sites decreases witkcreasing
concentrations ¢ ¢, ...,Cno @S more and more surface bridges are
built. The same happens obusly whenadsorption is an &khange
process (36) and

(1) one adsorbing species, e.gy,Aas a constamoncentra
tion in solution. Inthat case, the isotherm (41) degenerates to
the Langmuir isotherm (46).

(2) when the sum of theoluble cooentrations of the ex
changing species is a constant, ¢

2,07¢ (47)

Then according to (41the adsorbed concentrations are as given in
the following equation (48)

ajNG
No No

on + Z aING 1+ Z an-l g
=1 = ¢

%N %N . (48)

Ci(c) =Xt
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7.1.3 Adsorption on Variable Charge Surfaces at Low lonic
Stregths

Theconcetrations of surface species on variable surface charge
oxides can be calculated frottne following adsorption mass action
laws, similarly as in the two previous sections. Heand M be the
free proton and metabncentrations in solution,pthe total concen
tration of adsorbing sites on the variablarge oxide surface and,k
k, anda the adsorption constants for one, two protons and the dou
bly charged metal -all asumed to adsioribhe same plane (Dzombak
and Morel, 1990), thethe mass action laws and the surface site bal
ance are

XOHz2 =k1 P XOH H, (49)
x0=K2 xoH 1
P H, (50)

XOM =a P XOHM
H, (51)

X7 = XOHz + XOH + XO + XOM. (52)

Combining these four equations, we find the isotherms

2
XOHzM, H) = X1 kiP H
o PM+H(1+kiPH)+kiP, (53)
XOH(M, H) = Xt H
a PM+H(@+kPH)+kdP, (54)
XOM, H) = Xt ka/P
o PM+H(1+kiPH) + ko/P, (55)
XOM(M, H) = Xt aPM
aPM+H(@L+kiPH)+kdP, (56)

At trace concentrations of the metal, P is a funatioly of pH and

the ionic strength+ 1/2 5 72 g, where i designates any of the-sol
uble species Awith charge zpresenin the system. Dzombak and
Morel (1990) have tabated P.
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If, at smallionic strengths k 104 M, the correction factor is ap
proximaed by

ke
p=_V ki _PZC

H H, (57)

the curves of the approximation and the true P coincideis as
demonstratedh figure 6. At the ionic strength | = 20M where
many adsorption experiments have been made, the approximation

}

-4
I =10 M

pH

Fig. 6: Electrostatic correction factor P and its approximatigrasR functiorof
pH for two ionic strengths | (after Dzombakd Morel (1990))At | = 104 M,
P and P coincide, at | = DM, Pyis the (straight) line.

P= (@)Z/3
H (58)

is good.

A property of approximation (12) ithe exact balance between
positive and negative surface charges in pristine water,

XOHAM, H) = XOM, H). (59)

The isotherms resemble the ories exchange of two protons with
one metal ion (see (36) and (41)):
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XOHzM, H) = X1 kiP H’
a /K M+ @+ 2 Vkike) H?
k1 , (60)
XOH(M, H) = Xt H’
a QM+(1+2Vk1k2)H2
V ke : (61)
a /K m
XOM(M, H) =Xt ky
a ke M+ + 2 Vkake) H
k1 . (62)

The exchange stoichiometry is reflected in the exponentseofree
metal and proton concenti@ans, e.g. (41) being thsotherm for an
exchange of one proton with one metal ion. (60) - (62) lead tana
lytical solution of the set of transport equations This solution is a
useful guide to systemsith H-M exchange, which will be shown in
section 8.

7.2 Properties of Waves
7.2.1 Non-Retarded Waves
A non-retarded wave appears on two occasions :

(1) The sumof the adsorbed component concentrations is
constant (see (9)).

(2) One or several components do not adsorb (fi=0 in

(7).

Condition (1) ischaracteristic of the isotherm (41). Connected
with this is a property of thagotherm : The surface speciatioft @
=1, 2, ..., N) remains unchanged when all concentratignargy bya
common factor

Cie) =xr MG =x INEG=Ci@c), (=12 ... No

,zleXINCI ,:Zlle aq | (63)
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Becausehe equation of this non-retarded wave is ac,, the wave
lies on a line through the origin of composition space.

Condition (2) is necessary for a non-retarded wave to appear in
systems in which adsorption of all components follows isotherms
(46) or (48). Unlike for the exchange process (36), the empty gite A
does not appear explicitely among thgdpecies in the isotherm
(46), although it is part of the ggsn. Therefore, any variation of
causes  to change, or in other words;'k 0 for any shift ot.

Hence, the non-tarded wave, \o = &, is a solution only if one of the
H; itself is zero.

7.2.2 Waves are Lines

Waves are particularly simple if all site types adsorb accortding
class (41) and (46) isotherms (Temple (1983), Rhee et al. (1989))

. kf'c;
Cio)=y x§ 170

(G=1,2, ..., NSNo)
T 3(c)

No '
5 (0)=b+Y kg
le 14 (64)

where X is the concentration of adsorption site tgpehe constant

0.084
0.06
0.044

0.0

U0z 004 006 008 01 012 014 ¢,

Fig. 7: Two-dimensional concentration space ("composition space"switle 1-
and 2-waves. Adsotipn follows Langmuirisotherm (46). Wave velocity
increases in direction of right eigenvectyr (see (33)). The sdion of the
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Riemann problem is the ggence of constant states(c1/c+) connectedy the
1- and 2- waves (heavy lines). According to property @), (/ c1/c*4) is a
solution of another Rimann problem.

b has the value 0 or 1, and thesatption costants k' are indepen

dent fromc (see appendix 12 A 3 for proof thfe first two propdres
and figure 7 for an illustration):

(a) The wavegshocks and rareftion waves) coincide in cen
centrdion space.

(b) Thewaves (shocks or rarefaction waves) are lines (in con
centrdion space).

(c) The waves (shocks or rarefaction waves)rarariant mam
folds. This means that the k-waverepresented by the same
line indepedently from its starting point, , as long ag, ;

lies on the line.

7.2.3 Analytical Solution for the Multicomponent Sygem: The
Riemann Invariant

The k-Riemann invariants are function%p((/c) of the concetra
tions and are defined as follows:

re gradwj =0 (=12 ..., k-1, k+l, ..., No) (65)

where grad =4/0c,, 0/0cy, ...,0/0CN}-

Definition (65) means that across a k-wave amjychanges, while
the renaining N - 1 invarantsw, . are constant. For example, w

changes only across the 1-wased remains constant across all
subsequent waves. More generally

oy =g Wi), (=K
Wj(Ck) =

J( K { Wj(C-), (4> k)1 (66)
which means that if all NRiemann invariantsjv(with =12, ., N)
are known for the initial and final states,andc, they are known for
any of the constant states
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Because ychangesnly across the k-wave,can be visualized

as a generalized chemical component. If the compoikshtaot in
teract on the adsorbing surfaces, the k-Riemawvariemtwere iden
tical with the kth chemical components. The initial discontinaity-

c_ would develop with time into a series of wavesie for each
component, each expencing its own retardation. Across eagave
only one component would change, all othersaining costant (see
figure 1a). Similarly, in the case of interacting componésde figure
1b), each wavexperiences its own ta&daion, and across each wave
only one Riemann invariant changesthair textbook Helfferich and
Klein (1970) use the concept the Rienann iwariant, but do not
give the invariants this name, calling them H-function roots, instead.

In appendix 12 A 3 it is shown that the waves(ateaight) lines if
adsorption follows a multicoppnent Langmuiisotherm or is an ion
exchange process with constant selectivity coefficientgehplix12

A. 4 shows that then the scalar product of the left eigenvector of the
retardation matrix and the concentration vector is a Riemaanant

wj(ck) = lj(ck) ck, (67)

where the jth left eigenvectdcorresponding to eigenvalqeﬁ) for
corstant state, is defined as

li(cl) R(c) = pi(cx) li(cw), (68)

It is shown in appendix 12 A 4 that all left eigenvectors at any
constant statg, are known. Intrdudng a matrixL

Ino(c) (69)

the rows of which are the ledigenvectors of the retardation matrix
R(cy) and the vector of Rmeann invariants

Wo(CK) (70)
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we can restate the definition (67) as
w(ck) = L(cK) c, (71)

Becausev andL are known, the concentration vectofshe costant
statesg,, can be calculated byvarting (71)

cx = L™(c w(cw), (72)

8 Waves in Two-Component Systems

Mass action laws depend non-linearly ondbacentrations. In
certain restricted areas of concentration splaedehavior of a mukHi
component systerwan therefore be interpreted in terms of two-eom
ponent systems, tleontribution of the other components being neg
ligible. Multicomponent transport in porous medigght exhibit a
similar feature, and therefore thermodynamackorption data
-although mostlydetermined in two-component systems- provide
helpful, albeit non-complete, information fonulticomponent sys
tems. Dzombak and Morel's consistent gethemodynamic data
(1990) describingdsorption of protons and a metal ion on hydrous
ferric oxides will be used here as an example.

8.1 Analytical Solution of the Transport Equations

The proton concentratidd adsorbed on an oxide, e.g. a hydrous
ferric oxide, is
H =2 XOHx(M, H) + XOH(M, H) (73)
and the adsorbed metal concentration is
M =XOM(M, H), (74)
thus

M + H =XOM + 2 XOH, + XOH, (75)
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and with XOH = XO (see (59))
M + H=XOM + XOHz + XOH + XO = X, (76)

To solve the transport equations (7) for the (M-H)-system

G- gymr-S =
0 0 (77)
Mgy He-SH =0
0 o (78)

where H is the total protortoncentration (see below), we add (77)
and (78)

(M - E) (M + Hy - & (M+ Hy =0
¢ 0 (79)

and use the fact that the sum (76) of the adsorbed anadajproton
corcentrations is constant

(g "D M+ Hy=0

(80)
There are two solutions of (80):
(M + Hy) =0 (81)
and
g =Vw
® . (82)

After using(82) in (62) we know that the adsorbed metal concentra
tion does not change across this naayded wave: XOM' =0 or

XOM(M, H) = XOM(M+, Hs), (83)
The adsorption isotherm (56) then fixes te&ationship between M

and H. With (57), the appraration ofP for pristine water (k 104
M), the isotherm is (62), thus we get
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o oM

2
XOM(M, H) = Xt Ki H
a /KMy 1+ 2 Vkko)
1 .

ki H?

(84)

This isotherm meets (83) when

H=H: M 2-wave, non-retar
V M. ( dea). (85)

Thus, the non-retarded wave is determibgdthe exchange stoi
chiometry, the adsorption cstants do not enter.

The equation fothe other wave -given by equation (81)- involves
only soluble species. Eqgtian (81)states that the sum of the soluble
concentrations is a conserved quantity, i.e. it does not clengss
the wave

M+ Hi =M.+ H. . (86)

It is customary inspeciation calculations to approximate id
pristine wateiby the difference between the proton and the hydroxyl
concentréions, assuming that the concentration of th@®Homplex
remains costant:

He=H-OH=H - Kw
‘ H, (87)

where K, = 1014 (mol/L)2. With (87), equation (86) becomes

=M.-(H-H)-K, (& -1 -
M=M.-(H-H)-K (H H.) (1-wave, retadad). (88)

Figure 8 shows thgrid of 1- and 2-waves, with M= M. = 10°
mol/L and H = H. = 104 mol/L, 10° mol/L, ..., 1012 mol/L. Helf-
ferich (1992) has called it the "street map" ofgiistem, because the
only way to get froma state (-) to a state (+) is to first follow the 1
wave until (point (1) where) it meets2awave along which one can
get to state (+) (see example in figure 8).
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12—

11

10

pH o

-2.5 -8 2.5 -7 -&.3 -& -53.9 -3

log M
Fig. 8: 1- and 2-waves, (85) and (88), in concentration space. 2-waves are dashed.
Units of M: mol/L. The points (-), (1) and (+) mark the solution of a particular
Riemann problem. Note that the logarithmic plciggerates the angle between
the waves at high pH.

The retardation of the 1-wave g5 (M, H), the larger of the two
eigenvalues oR(M, H) (see (31)). It has the simple form

pc)=1+ 1 0XOM(c) 1+ 2HM )
¢ oM H? + Kuw (89)

with

0XOM(c) _ X1 a PZC (1 + 2 ksPZC) H?2
oM (@ PZCM + H2 (1 + 2kPZC)) (90)
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At low ionic strength the surface chargre the oxide is small, and
therefore approximation (5€puld be used to calculate a solution of
the transport equations (77) and (78).

It is interestingo notice the similarity between the oxde system at
low ionic strengttand an ion exchange system with constant surface
charge. For a two-compentsystem (N = 2) with an exchange
isotherm (41), the analytical solution method gives for thantt 2
waves ( g + Cp)' = 0 anck = /o, respectively, or

c+ C2=(C)-+ (&)
l.e
=-ca+ )+ () (L-wave retarded), (91)

as compared to (88).

From G (c1, &) = G ((C1)+, (c2)+) follows for the isotherm (41)

= (G & (2-wave, non-retarded)
(Co)+ (92)

as compared to (85).

The independence of the shape of thwaees (91) and (92) from
the concentrations. andc, and the separation factay, is peculiar
to the exchange (35) in a system with only 2-components.

Contrary to theshape of the waves, the retardation of the 1-wave, i.e.
the eigenvalue, (¢, &) of R(cy, ¢), depends otthe identity of the
exchangingons. As compared to (89) and (90) it is a simpler func
tion of the separation factors and concentrations

=14 Ko OEare)

P 2
? (0pc+ ), (93)

8.2 Exchange Systems with Buffers

Both waves will be retarded whenever there is a "buffer" in the
system that allows adsorptida break away from the rigid one-to
one exchange depicted in figure 4expressed in (81) as a conse
guence of (57), or (91). We have such a buffered situation when
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(1) the two componentadsorb according to a Langmuir
isotherm (46) owgonstant charge surfaces (P = 1), the empty
sites playing the role of the buffer,

(2) we have three species and

(a) one ofthe species concentrations in solution is constant
(isotherm (46)) or

(b) the sum of the species concentrationsdlution is con
stant (isotherm (48)).

The initial discontinuityc, — c_of the Riemanmroblem develps

into asequence of two tarded waves, a slow one, the 1-wave, and a
fast one, the 2-wave. In composition space these wavelnage
tangential to a parabola (Helfferich and Klein, 1970; Rhealgt
1989), as depicted in figure 9. The proof can be fourappendix 12

A. 4. The equation of the parabola is

G=1-c+ 2/, withg=3

=~

(94)

Fig. 9: Parabola (94) witivaves.r, andr, are the right eigenvectors parallel to
the 1- and 2-wave, spectively.

The valueof k depends on the form of the isotherm. In the ex
change syem (case 2b, iwhich all three concentrations may vary
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underthe costraint g+ c,+c; = ¢ (¢ = constant, including ¢ = 0)),
i.e. for

R aj3 G L S
C‘(C)_XTO(1301+O(2302+03 (=1, 2,36nd;c;—c) (95)
we get
k=1-0n

ap-1 . (96)

For a system with surface bridge formation or an exchaygem
with constant g(in the latter we introducg k aj3/c3), i.e. for

* k CJ .
cc)=Xyr—— 23+ =1,2
i) =X l+kiat+tkc ( ) 97)
we get
k = 1.1
ki ko. (98)

The parabola lies in the upper left quadrant whkeén positive, and
in the lower right quadranthen k is negative. The buffer digsgars
when k- 0, which is equivalent to an isotherm (41) with M2,

¥y — ajg . _
GO =XTgore (712

(99)

For the 2-component system withidge formation, (97), we get
for the retardations of the 1- and 2-wave

pro=1+XT { ki(ltkaCrtc))tka o / ka(1+ka(Crt o)) +ka” 4k1k2}
2 & & 5 (100)

with

0=1+kia+kc (101)

When ¢ >> k, the 1-waves in the 2-component systeth bridge
formation approach asynytically the 1-waves (91) othe 2
component exchange system (41). At thelswyated concenttians
almost all surface sites (in tlsystem with surface bridges) are-oc
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cupied by either species Ar A,, and the adsorption process degen
erates intan exchange between these two species. This explains the
asymptotic slope -1 of the 1-waves in figure. 9.

9 Barrier Againgd Remabilization of a Contaminant

From (93) one can see that ihahgmuir or ion exchange system
with two independent compents A and A

(1) the slope of the 1-wave approaches -Las«,
(2) the slope of the 2-wave approaches 0,a&,

if k is positive, i.e. component.fadsorbs more strongly {, < 1 or
k1 < k). Assume that the other componen, i& a contaminant.

Figure 10 displays thtailure of the adsorption barrier: Initially,
the contarmant inventory is asbrbed on the soil particles, (¢ 0).
When the concentration of the other gmment in the feed is raised
above the threshold k, the contaminant is remdr@a the adsoihg
sites and itsnventory is carried between the waves. The coirtam
concentration gbetween the waves is of the same oafenagnitude

as the concentration of the remobilizing solute in the fegd=(c,),

because the slopes of thednd 2-waves are approxately -1 and 0,
respectively.
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C24

0.1
©
~\

. =
-0.1 -0.05 ~ 0.08

C

' ' —
0.1 0.1F 0.z Cq

Fig. 10: Parabola (93) and waves in a system withd@mponents. Isotherm:
Langnuir type (97), k=5.0 ML, k, = 12.0 M. Component A: contaminant,
component A&: remobilizing agent.

Figure 11shows the spatial variation of the corresponding- con
centration profiles, ,(x,t). The described adsorptidrarrier (97) will
not fail when the contaminaist bound more strongly to thadsorb
ing surfaces than the competing speciesj.A whena,, > 1 or k >

k, (see figure 12).

Whereas the 1-waves are not changed as comfzatbd case shown

in figure 10 and 11the slope of the 2-waves does not approach 0 as
c. approaches 0. Therefore the concentration of the camdam
between thevaves cannot raise much above the one prior to lsemo
lization.
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Co.
C2+
C]__ C1+
—_ S
0 X
C,4 C oM wave 1! ‘'wave 2
N
Co. v
e EEE R 4!
L4 Ca1
Cua
Co+
Cl- C1+
0 X

Fig. 11: Failure of adsorption barriery As contaminant, A remobilizing agent.

02A

0.3+ 1-wave

Fig. 12: An adsorption barrighat cannot fail: k < 0. ComponentjAcontami
nant, component & remobilizing agent.
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The described effedtas been applied in various areas to purify
mderials from unwantedompments: Pfann (1958) has introduced
thezone meling process to remove impurities from semigdoctor
materials. A heat wave (instead of a wave of a competing spégies)
remobilizing the inpurity atoms. Asimilar process (using steam) has
been proposed by Hunt (1988) tonve gasoline trapped in soils.
Harwell (1992) discussed rembbing such non aqueous phasp
uids with a chlorinated hydecarbon solvent or surfactant wave.

10 Conclusions

A single abrupt changef the water composition at the inlet of
a column of a porous mediuwith a homogeneous concentration
distribution develops wittime into a series of centered waves, if hy
drodynamic dispersion is neglected. Centered waves are ttlassa
of solutions of thehramatographic transport equations that can be
considered the basic building blocks of geneditions. There are
as many centerediaves as there are chemical components in the
system.

It is customary and helpful in chromatographylat the variation
of the concetration vector across a wave in concentratgpace.
When this is done for a set of waveasnet of curves results which
Helfferich has callethe "Street Map of the System". It is character
istic for the chemical iteractions in solution and on the adsorbing
surfaces. Its computation doest exceed the limitations imposed on
an experimentdiaboratory. It requires sifdar capacities as equilb
rium speciation caldetions which are nowstandard tools in such
labs.

Because athe mentioned chemical non-linearities, thresholds run
through concentration space at which the netafes changes shape.
Experience we gained on osiele of a threshold is irratant beyond
it. Once the net of centeredaves is known for a set of ther
modynamic parameters, the influencepafameter variations can be
interpreted in terms of ideformations and the change of the thresh
old locations.

This helps taunderstand the impact of uncertainties in the chemi
cal interactions more comgrensively than results aftandard nu
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merical models, e.gf coupled finite-difference chemical-speciation
models. The latter compute waves initial and boundary conditions
that are discrete, isolated poiintsconcentration space. Since they do
notreveal the general structure of the waves such as the locations of
the thresholds, neither inter- nextraplolation of numerical results is
justified without prior knowledge of the thresholds.

The resultsof chromatographic calculations are thus useful
guides for dsign andinterpretation of numerical computations as
well as chemicagxperiments assessing the quigcy of the assumed
chemical interactions. When the caeter of e.g. the chemicharrers
against remobilization has been clarified in feedback betveeen
perimentand chromatographic model computations, follow-up nu
merical calculations can concentrate on site specific criticalgmoh
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12 Appendices

12 A.1 Relative Influence of Diffusion/Dispersion and First
Order Kinetics in a Single-Component System

For a system (1) and (2) with only one component adsorbing

9 @axt) + Cx) + 2 (vw-D Q) xt) =0
ot 0x ox (Al.1)

aC(x,t) _ C'(9 - C(x.b)
at € (Al 2

it can be shown (Liul987, see also section 12A. 2) that the solution
of the Riemann problem with > c, is for large t (t ->)
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12 App.1 Diffusion versus Kinetics

a traveling waveg(x, t) for D = 0

Co(X,t) = C(9) (A1 .3
with
s=x-0t, (Al 4
g=Yw
¢R, (Al.5)
R=1+ 1C*(CF) - C*(C)
¢ &-¢ (A 1. 6)

-the latter given by the Rankine-Hugoniot relation (24).

Thus, the concentration jump (4) develops intsteady pro
file c(s) when we wait long enough.

With (A 1. 3) the time asymptotic transp@dquation is with
d/ds abreviated as '

dr. C)+vwc-20%C ¢]=0
$[0((pC+ )+VvwC-20 c] . (A1.7)

the same traveling wave (A 1. 3) o= 0 or C = C*.

With (A 1. 3) the time asymptotic transp@dquation is with
d/ds abreviated as '

dI- C)+vwc-Dc]=0
g O@er C)rvwe-Del=0 (A1 8)

The interpretation of the developmentaotraveling wave is this:

Dispersion or adsorption kinetics tend to prodacanooth transition
between ¢ and ¢, whereaghe nonlinear dependence of the adsorbed
concentratiorC* on ¢ counteracts dispersion or kinetics and tries to
produce a steep profile. The travelingve is the stationary com
promise.
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It is assumethat also for D# O the transport equations (A 1. 1)
and (A 1. 2) have a travelingave as time asymptotic solution, and
that its width is given by the dispersion process if

20%C" < D. (Al1.9

Using the definitions (A 1. 5) and (A 1. 8hd the separation of
the dispersion into diffusion and hydrodynamic dispersion

D=DT+ 3w
¢ (A 1. 10)

where D* is the diffusion coefficient in watarthe totuosity (0.3),5
the dispersivity,

and the approximation

C =¢R-1) (A 1. 11)

the upper limit ot after (A 1. 9) can be written as

2 2
= R0 p= RO (pers =105 R gys
MR-1)  2&R-1) ¢ R-1 (Al 12)

The right hand side of (A 1. 12) has been evaluftieg = 1 = 0.3,
=0, D*=0.16 m/yr and v, = 0.5 m/yr.

The interpretation of (A 1. 12) is this: If thesatbedconcentration C
reaches 37% of itsquilibrium value, i.e. C*/e (e = 2.71), within a
periode or less, the kietics of the adsorption process hagligble
influence -as comered to difusion/dispersionen the shape of the
traveling wave.

Figure A 1. shows more detail of (A 12) by demonstrating how
the upper limiof ¢ depends on the speeg, of the water, two retar
dations (R = 5 and 1.1) and various dispersividiethe latter being
approxmated by L/100.
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Fig. A 1: Upper limit of relaxation timg (A 1. 12), as &unction of speedy
of water for L =0, 3, 6 and 9 m.= 0.01 L has been used.

To get an analytical expression for the influenteelaxation rela
tive to dispersion, let us ceitler a moderately retarded spedies.
R > 5), sathat we can neglect the 1 in the denominator of (A 1. 12).
After multiplying both sides of (A 1. 12) witho? & = (uy/(¢R))? €
and taking the square root of both sides

ge<l [/ D ¢-11pg
2V eRYy V2 | (A1.13)
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whereD = D/((R-1)) approaches the retarded dispersion coefficient,
D/(¢R), for large R.

Equation (A 1. 13) compares two lengths calculatetivim different
one-component systems:

Left side: Assumea purely advective system at equilibrium

(equation(1) with C = € and D = 0).c¢ is the advective
distance a wave travels duritige relaxation time (advection
during relavation).

Right side: Assuma purely dispersive system at equilibrium
(equation (1with C = C" and \, = 0). V(De) is thewidth of
the profile c(x,t =¢) for an initial concentrtgon jump (c(x,0)
=c.forx<0and g for x= 0).

In this senseelaxation of adsorption can be neglected against dis
persion if advection during relation @) is smaller than thevidth of

the profileV(De) divided byv2.

Evaluated for natural water flow (v 0.5m/yr) through river or

lake sediments in medate latidudes (Al. 12) means: Relaxation
timese < 1 week have a negligibleflnenceon the shape of naturally
produced profiles (sealso the very comprehensive analysis of van
der Zee (1990)).

12 A.2 Non-Linear Single-Component Transport:
12 A.2.1 Non-Equilibrium Transport without Diffusion

The transport equation for a single component witkidsion is
the conservation law (A 2. 1)

dc, 1 0 _
—+ =~ (pc+C)=0
ox Vw ot (@ ) , (A2.1)

where

oc_c-c
at € (A 2. 2)
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c and C are the species concentrations in the soluble phdsen the
adsorbing soikurfaces, rgpectively. The soil consists of the sole
phase (water) and the solid phase (soil piad),the volume fratons
of which arep and1 - , respectively. y is the flux of the weer.¢ and

V,, areconstants. The adsorbed concentration C(xJ/§xes to its

equilibrium value é(c).s is the correponding relaxatiotime due to
adsorption Kinetics.

Liu (1987) presented a solutidor (A 2. 1), (A 2. 2) for the Rie
mann problem :

This system (A. 1), (A 2. 2) has the characteristi¢s=I0 and } =
Vi /o. The equibrium chamdeiistic|*, i.e. the one for (A 2. 1)) with
c=Cis
)\* = Vw 1 = Vw 1
¢ ,1dC0Q P1+%X_k

¢ o« ¢ (1+ko?, (A 2.3)
Thus, I is a subcharacteristicy(k "< ).

The system (A 2. 1JA 2. 2) can be asymptotically appromated
by

%4+ 19 g+ - (2 g9 29 =0
a ot

ox Vw ot (A2.4)
where
_2 €O
=0 & (A 2.5)
Liu shows that a traveling wave
cx,t) = cx - at) = c(s) (A 2.6)

is a solutiorof (A 2. 1), (A 2. 2) for the Riemann problem (with. c
and ¢ being theconcefraions right and left of the discontinuity,-re
spectively).o is given by the Rankine-Hugoniot cotidn (24) forthe
equilibrium system (C =)
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g =Vw Ac =Vw 1 =Vw 1
? Ac+LC) (Pl+l£ ¢ R
® ¢ Ac : (A2.7)

with Ac = ¢, - ¢, A(CY) = (C" (cy)) - (C7 ().

Using (A 2. 6) in (A2. 4), we can integrate the transport emuma
to get the profile s(c) of the traveling wave. With the abbtmna
c-c - c-Ci

c= ,
Ac AC

the result is (for proof see paragraph IV below)

@ kc= S(C) - S(C-\\-) = 2028 C*iﬁ\
], vw(l-%) e

(A2.8)

12 A.2.2 Equilibrium Transport with Diffusion

When diffusion is included, the transpagtjuation for a single
conponent in local eglibrium with the soil surfaces is

0 * 0 0
o +C)+ ~(ww-D2)c=0
ot (pe+ C) ox v ax) ¢ ) (A2.9)

Limiting ourselves again tthe asymptotic solution, the traveling
wave (A 2. 6), (A 29) can be integrated resulting in the following
equation for the profile

S0 - se) = DI’ E
mig - (A 2. 10)

For the Langmuir isotherm, Lakend Helfferich (1978) and van
der Zee (1988) deriveh analytical expression for the integral in (A
2. 10). Later (1990)an der Zee derived an analytical expression for
the case of combined non-equilibrium and diffusion/dispersion.
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12 A.2.3 Linear Transport of a Single Component

If the adsorption isotherm is linear
CO=¢R-Dc

the solution of the transport equation (A 2. 1)) for the Riemann
problem is (Bear, 1979)

X - Vot X + Vot
C[é;t] = %(erfc gt + g0l grfc R o R
2/ Bt 2
/ R il R, (A 2.11)
where
vo=Vw
Q.

12 A.2.4 Proofs of (A 2. 8) and (A 2. 10):
Integration of Transport Equation Assuming a Traveling
Wave

Integration of the transport equation (A 2. 9) will be shdinst.

For the traveling wave sdion (A 2. 6), (A 2. 9) becomesn ordnary
differential equation

d - C’) +vac-Dc] =0
g Lo+ C)+vee-Del =0 (A 2.12)

from which ¢' = dc/ds can be calculated.

=1d C) +Dc] =
€=y g lOeT €I Del (A2.13)

Since ¢ = 0, the integral of (A 2. 13) fromycto ¢

O

Vé{o[q)(c ) + C- Ci] + D(C - ¢4)} (A 2. 14)

can be simplified and solved for ¢’
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¢ =1 {(e-c)w - o) - o(C"- Ch=

=M 9% {(cc)-—9(C-Ch}
D Vi - OQ . (A 2. 15)

Replacing (see (A 2. 7))

Vw- 0@ =Vy(l-L)and— 0 =AC
R Vw-0Q AC,

(A 2. 15) appears as

v(d - 1)
¢ = R_{(c-c)-Ac(C-Ci) =
D AC

VW(l _L) * *
=AcC R {C-C+_C-C+}
D 'Ac acC . (A 2. 16)

After introducing

V(1 - l) —
& =Ac R (¢ C}
(A2.17)
The reciprocal of dc/ds is integrated fropto c
b e =5 - s(e) =D £
], wd-H ) s
R™ Jor . (A 2.18)

For the case of nomquilibrium transport with relaxation the
asymppotic profile can be callatedsimilarly, since -after introducing
the traveling wave solution into (A 3)- the rsulting ordinary di
ferential equaon is similar to (A 2. 12):
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dr C) + vwc-20%C" ¢] =0
cS[O((pC+ ) + vy C- 20 c] . (A 2.19)

Replacing in (A 212) D with 22C" gives the profile for relax
ation.(Note that ¢ depends on ¢ and has to placed under the inte
gral.)

& go=5(o)-s(o) = 20% J C
* ,c-C

C+ w 1- l
' = (A 2. 20)
12 A.2.5 Example: Langmuir Adsorption
Silver adsorbs following a Langmuir type isotherm
C*(c) =X+ _kc
© =X e (A 2. 21)

The Langmuir constantik composed of the exchange constant a
for Ag/H exchange anthe surface hydrolysis constarg, both of
which aredefined as adsorption mass action constantderfReg to
the adsorbing surface site an oxide as XO, the site occupied by
silver is XOAg and the ones occupied by awetwo protons are
XOH and XOH, respectively (Dzombak and Morel, 1990). The ad
sorption reactions can be describedhmsy following mas action laws,
where the symbols XOAg, XOH XOH and XO are usetbr the
corresponding adsorbed concentrations, e.g. XOAg = C*

XOAg=0a XOHM

H, (A 2.22)

XOH, = ki P XOH H, (A 2. 23)
X0 = K2 XOH

P H . (A 2.24)

P is an electrostatic correction factor (Dzombak and Morel, 1990)
_ Fi
P=exp ()

wherey (unit: Volt = Joule/Coulomb) is the electrostatic potential at
the adsorbing surface, F (9648%ulomb/mol) is the Faraday con
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stant, R(8.31 Joule/(mol Kelvin)) is the gas atant and T (Kelvin)
is the absolute temperature.

The electrostatic correction factor is generalljuaction of the
composition of the aqueous stdun. In dilute systems , i.at ionic
strengths | = (1/2¥ 72 ¢ < 10"-4 M, where gand ¢ are the charge
and concentration of componenh solution, P can be approximated

by
k2
p="V ki
H . (A 2. 25)
It follows from (A 2. 25) that
XOH, = XO = Vkg ko XOH, (A 2. 26)

Using XT, the concentration of adsorption sites, and (15') i2.(22)
- (147)

X1 =XOHz + XOH + XO + XOM =XOH (L1 + 2Vki ko + o M)

H', (A2.27)
we can construct the isotherm for silver,
XOM(M, H) = X1 aM
o M+ H(1+2Vkka), (A 2. 28)

which can be brought into the form (A 2. 21) when pheton con
centration is held constant by buffers:

oM
XOM(M, H) =Xy 1+ 2 Vkikz)
1+ @ M
H@+2Vkika) . (A 2.29)
Thus,
k=— Q@
H L+ 2 Vkiko). (A 2. 30)

We get asimilar expression for k for regions in {M, H} space in
which P is constant, e.g.
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P=1

and either XOH or XOH, + XOH being negligibleln the first case,
i.e. when

XOH2 << XOH,

the isotherm is

a_m
XOMM, H) = Xr—aM - Htk
aM+H+ks a _M+1
H+ k2 , (A 2. 31)
and, thus,
k=—20
H + ko. (A 2.32)
In the second case, i.e. at H <x the isotherm is
awm
XOM(M, H) = Xy aM - ko
aM+ks dIM+1
k2 , (A 2.33)
and the Langmuir factor is
k=0
ka. (A2.34)

At H = ky all expressions for k, (A 2. 30), (A 2. 32) and (A 2. 34), are
similar. For this eample, expresion (A 2. 34) is chosen.
With the data from Dzombak and Morel (1990)

a = 10172 (A 2.35)
k, = 108-°mole/liter (A 2. 36)
we get

k =a/k, = 1.8 10 liter/mole. (A 2.37)

The profiles in figure 1 were calculated basedton following data
(A 2.38):
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X1 = 5 102 HFO, concentration of sitesdsorbing Ag, (Dzom
bak and Morel, 1990).

HFO = 102 mol hydrous ferric oxides (F®3) per liter of soil
= 0.09 g hydrous ferric oxides per liter of soil.

C. = 5.0 10* mg Ag per liter of feed water.
C+ = 0, Ag concentration in undisturbed soil column.
-5
g. 10
-5
6. 10
-5
4. 10
-5
2. 10
i

-0.4 -0.2 0 n.2g 04 n0.& 0.8 1

Fig. 1: Profiles for linear and non-linear adsorption, calculated for the same retardation
(R = 2.7, according to (A 2. 7)). Traveling wave -the curve without tail- was calculated
using (A 2. 10). Profiles for linear adsorption isotherm calculated for times t = 0.1,

0.5, 1, 2 yr, usg (A 2. 11). Element and environment: silver in hydrous ferric oxide
coated inert sediment matrix. Abscissa: distance (units: m), ordinate: concentration
(mol/Liter). Adsorption data from Dzombak and Morel (1990).

® = 0.3, fraction of soll filled with liquid phase (water).
Vo = w/e = 0.5 m/yr, speed of liquid phase (water).
The traveling wave was calated by integrating (A2. 10) and

plotting c vs. s. Therofiles c(x,t) for the linear isotherm were calcu
lated att = 0.1, 0.5, 1 and 2 years, using (A 2. 11).

12 A.3 Langmuir and Exchange Type Isotherms:
Shocks and Rarefaction Waves are Lines and Coincide
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The first part ofthis proof concerngarefaction waves i.e.
solutions of the sadf differential equations (7). Using end (fj to

denote soluble and adsorbed concdinmn@ as function®f &, this
equation reads

on B T g 210N
o & o & v, (A3.1)

Dividing by dg/dt we get

("W-E)—Eﬁw (=12 .., No
(p .

Because y/o - € is the same for all j, this equation can be written as

& de dong (A 3.2)

which is called differential coherence conditigtelfferich and Klein,
1970).

Because the changg- ¢ ; of the N, components of the coen
tration vector across a k-wave is restricted hylNtonditions (A 3.
2), the concentration vectay can be egressedas functions of one
paameter ifc,, is given. Here we choosewhichis a measure of the
sum of all adsorbed concentrations, the surface coverage

P
S)

1 Cf =1-1 = surface coverage
X1 71 5 (A3.3)
Correspondingly, the Langmuir isotherm reads now
sy — v Kk Od0)
Ci(®) = X7 xR
O =X =5 (A 3. 4)

It is thisstructure of the isotherm that causes the waves to be lin
ear, as will be shown now (A 3.5- A 3. 13).

The N, derivatives dCJ#dq in thedirection across the k-wave in
composition space are
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G _C' _Xrk G-9)

C T2 9T
& g 5 g . (A3.5)
where the prime denotes the derivative wéhpect te. Using (A 3.
5)in (A 3. 2) gives us

Ki@-CL)=ko(B-2)=... =kny (5- N0 )
cr c Ny . (A 3.6)

Differentiating each terrm the equality again with respect d@jives
for the j-term

diE-9)=k@-1+g9 )= N9
dBJ( q,) j ( CJC,'Z) lq‘z
G .

With that in mind (A 3. 6) can be rearranged

kic' - k' = — KNoOno”
12 12 1.2
ot o% oo (A3.7)

In equalities like db; = a/b, = a/b, the followingequation holds:
g/b;=Z /2 b, where the sum extends over k=1to 3 and,j i3 or
3. This is applied to (A 3. 7):

No

) kig"
kic" — ko' — = KngONg _ J=
1.2 12 1 ~ 2 No
o C1 ) C N CNo z qlq.Z
i ) (A3.8)

From the definition od we know that

i _ (A3.9)
Therefore, any solution of (A 3. 8) must meet the followingditoon

G'=0 (A 3. 10)
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or

o

qi‘zzo
G

N
£ (A 3.11)

Integration of (A 3. 10) tells us that in each k-wallecompments
cj of the cowentrdion vedor ¢ are linear functions of the canon

parameteb:

G'=0
i.e.
G'=g,orc'=a (A3.12)

with a = {a1, @, ..., a\lo}. Because -for any wave, e.g. the k-wathee
g are integration constants, is independent of, i.e. irdependent
from the location on the k-wave. Gamuently the k-waves a
(straight) line in composition space.

Comparing (A 3. 12) with (33) one can see thais the right
eigenvectorry corresponding to the k-wave. Thus, tivector de
scribing the change afacross the k-wave

C' =rk,
is independent dt.

Integrationof (A 3. 12) will give us the k-wave. Witb.1-8¢ de
noting the change of the parameseaicross the k-wave and withe
nomenclature introduced frgure 1, we get the following g@xession
for the solution of the Riemann problem

Ck =Ck1+ rk (Ok1-0k),  with rk being independent of c, (A 3. 13)

(A 3. 11) gives another condition for the slopgsvben ¢' = 0. In
a2-component-system (A 3. 11) gives the equation of a cufeg) c
having as tangents the linetich meet (A 3. 13) (see appendix 12A
4).

It will now be shown thak-shocks coincide withk-rarefaction
waves (A 3. 13)The concentration changes across a k-shock by a

finite amountrather than by differential amounts as across a rarefac
tion wave. Accordingly, the masonservation law involves differ
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ences rather than differentials. Otherwise the conservation desvs
the same as for rarefaction waves (i.e. (3))

ﬁ {oa(x,t) + Ci(CLC ..., o)} + Vw AAX a(xt)=0 (=12 .., No)(A 3.14)
or after dividing byp and multiplying withax
A +1C)BX_Vwpag=0

¢ At o .
Solving forAx/At = ok, the speed of the k-shock,

Vi
o=Vw_AG__- @ i=12.,Ng
®a@+ic) 14+1AC
¢ ¢ Ac : (A 3. 15)

(A 3. 15) is the so-calleRankine-Hugoniot relation". It has gN
physical solutions (Lax1973).

The speed of the k-shockhy a factor R smaller than the speed
of the water. Ris called "retardation of the k-shock".

Rk:]_+;Ak7C;r
0 M (A 3. 16)

The Rankine-Hugoniaklation (integral coherence condition) can be
written in a form analogous to (A 3. 2):

AC1 =AC2= =BCNo  for eoh keshock (k= 1, 2, ..., No)
Ac DG Aow, . (A3.17)

As was shown in (A 3. 5 - 13), the relationship (A 3is2}aisfied
when the cooertretionsc] are linear functions of a paramet&r

Writing cJ(eS) as

G=380+h (A 3.18)

we get for the differential coherence condition



55 12 App.3 Coinciding Shocks and Rarefaction Waves

-
Q:E: XTkjﬂ
&G d 3%
& (A3.19)

and for the integral coherence condition

AG _ -X7K; 7bj
Aq 355+ 4) (A 3. 20)

wheres and&+A are the values of the parameter left and right of the
discontinuity.

ReplacingAC*j/Aq in the integral coherence condition withe
value given in (A 3. 20) malts in

bl :-Xk b2

b I © 72— bNo
1 TK2
a0 (0 + A) ad (0 +A)

TKNg —— 20—
awd 6+48) (A3.21)

The differential coherence condition with gt replaced with (A3.
19) is

“Xrky B = Xk P2 = = - Xk, Do
ad 2 e, (A3.22)

After having canceled common factors in (A 3. 21) and in (A 3. 22)
we get the same cdition for the @ lj and k

bi_.bp_ _. bn
ki =kp 22 = .. = Kny 20
'a Ca No v (A 3. 23)

Thus the same line (A 3. 18) satisfies thikerential as well as the
integralcaherence contibn. In other words: k-shocks coincide with
k-rarefaction waves.

12 A.4 Waves in a Two-Component System with
Langmuir Isotherm

Using g and Ci to denotesoluble and adsorbed concentrations
as functions o€, the equibrium transport equation (3) reads
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(Vl-g)ﬁ-éﬁ:o (=12
¢ & . (A4.1)

The corresponding differential coherence condition (9d) is

Q _Q:O
d; dou (A4.2)

Writing the directional derivatives in (A 4. 2) in terms of partial
derivatives in corpostion space

g:g+ﬁ@
dg oOJc O do

and multiplying withthe derivative dgdc, gives us an expression
equivalent to (10c)

0 C2 dCl
(dC2

aC; aC,
0C1 0C2

dCl aC]_

2
do,) ey dc; odc; | (A 4.3)

5)

At this point the specific form of the isotherm is introduced:

1+ Blcl + 82C2 Pe) (A 4 4)
i.e. for the 2-component Langmuir isotherm
I =Xt ki, Bj =k (A 4.5)

For ion exchange in a 3-species syswth constant total concentra
tionc=q +c2+c3

(113
G

Ci(c) =Xt
d]g-l Cl+ a%—l C2+ 1

we have

GJ3 GJ3-1

Ni=Xr— c . (A 4.6)

B =
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The partial derivative of the isotherm is then

aCT = L (Bjj + 6”)
)

dg 5 (A4.7)

where the Kronecker symbg); = 0 for i j andg;; = 1.
With (A 4. 7) the equation (A 4. 3) assumes the following form

[-25102(@)2 + (MBoc2 + M1 - [oBgC1 - |_2)g -FB2c =0
de dc; ) (A4.8)

Dividing through by GB4 (note that GBq = G1B5) and abbreviating
= L 1- Q C = ﬁ
Bl( rz)’q k (A 4.9)

the differential equation (A 4. 8) fok(@y) can be written as

— 0112 — o\ = —
o) -(1+a-c -c=0
A TPy, ma0 (A 4. 10)

Glueckauf (1949) solved thiequation by differentiating once more
with respectto g

‘ﬁf;%l{m%- 1+c-o) :o.

(A 4. 11)
This equation is satisfied by a set of lines
de
o,
ie.
cfc) =aci+b (A4.12)

that are tangential to the solution of the equation

26X =1+¢-5

& . (A 4. 13)
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Using (A 4. 13) in (A 4. 10) gives
(1+C1- ©) + 4602 = 0,
which can be solved forc
G=1-C* 2/, (A4.14)
(A 4. 14) is a parabola that touches the ax&s atl andc; = -1.
12 A.5 Solution of the Riemann Problem with Riemann Invar
ants

The solution of the Riemann problem makese of the fact that
the waves are (straight) lines composition space, or -in other
words- that the k-wave connecting constant stegegandck adjaent
to it is a line parallel to the right eigenvect@rof the Jacobmatrix of

the isothermsKd (see (33) and (A 3. 12), (B. 13)). With ~
denoting prportionality

Ck - Ck1 ~ Tk (A5.1)
with
Kd(c) r(c) = kek(c) r(c) (A5.2)
and
r(c) being constant across the k-wave, (A5.3)

The Jacobiaikd(c) has been di@ed in (33).

In addition to (A 5. 1) {A 5. 3) the solution uses only the biorthog
onality of the left and right eigenvectors

rdc) 1ic) =0,  ( #Kk) (A5.4)
where
Ik(c) Kd(c) = kddc) l(c). (A5.5)

We will need the following theorem in this appendix:

Theorem:
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The left eigenvectocorresponding to the eigenvaluej(of) can
be calculated from the dabianKd(c-) andKd(c+) as follows

P R (E )
l; - J
A N S (A 5. 6)

with Ij' = Ij(c.) andlj+ = Ij(c+).
Proof:

Becausgy is constant across the k-wave,

M(Cre2) = re(Cx) (A5.7)

soare (or can be chosen) the left eigenvectors that are orthogonal to
rk

lickn) =li(c), G # k), (A5.8)

Then the left eigerectors in the fan of constant statescq, o, ..., Cy
(see figure 1) are:

l1(c) =13, 1(c) =15, ..., Ing(C) = Ing

I1(c1) =11, 15(c2) =15, ..., Ing(C2) = Ing

l1(c2) =17, 12(c2) =13, 13(c2) =13, ..., Ing(C2) = INg

l1(C+) = 11, ..., INoa(C+) = g1, Ino(C+) = INg, (A5.9)

This can be written in the compact form (A 5. 6), g.e.d.

LetL(ck) be the matrix the rows of which are the left eigenvectors
corresponding to the eigenvalues of the Jacalid(ak), kdi(ck), ..,

kdNo(ck)

Ino(Ch) .
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The j-th row in this matrix is eithé[+ orlj” depending onk (see (A
5. 9)). SoL(ck) is a known matrix.

The k-Riemann invariant idefined as the scalar function of the
concentration vector that changes only actbek-wave and remains
unchanged across all other waves.

Definition: Let O, denote thegradient in concentration space, then
the scalar function yc) is the j-Riemann invariant if

nddew; =0 (=1, 2 ..., k-1, k+l, ..., No), (A 5. 10)

Thus, both the left eigenvectiy and the k-Riemann invariah&ve
the property that they change ordgross the k-wave. So, for the
Riemann invariants there exists a relasiop similar to (A 5. 6)

wh, (<K
W‘(Ck) - l_ .
: {wj, (i>k (A5.11)
with wj* = wj(c+) and wj- = wj¢-). The j-th component of the viec

wa(Ck)

w(ck) =

Wnio(Ck)

is thus either y or wj-, depending on at whak it is evaluated. Like
the matrixL(ck), the vectow(ck) is known.

Defintion (A 5. 10) does not defirge unique Riemann invariant.
The following theorem gives us a convenient choice.

Theorem: The scalaproduct of the left eigenvector and the concen
tration vectorc evaluated at the k-th constant state

wjc) =ljc) ek, (., k=1,2, ..., No j k) (A5.12)
is a k-Riemann invariant.
Proof:

rkldew; = re (@elj ¢ + 1j Oc) =rk Ocljc + i lj,  ( Z2K), (A 5.13)
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Because of (A 5. 8)kDCIj in the first term of (A5. 13), the derivive
of Ij in direction ofr, is zero:

ndedj =0, (#k). (A 5. 14)
By (A 5. 4) the last term in (A 5. 13) is zero. Thus,

ndow =0 ( Zk),

which is the definition of the k- Riemann invariant, g.e.d.

The solution of the Riemann problamnow straighforward. Equa
tion (A 5. 12) can be written in matrix form

w(cK) = L(ck) ck, (A5.15)

wherew(ck) andL(ck) are known for altk. Vectorck is the un
known. Inverting (A 5. 15)

Lc) wicl = c (A 5. 16)

gives the solution of the Riemann problem.

13 Notation

First parenthesagve units. (-) means dimensionless. Last piuen
ses give location where symbol idided or first used.

a index specifying site type, (64).

aiNn constant for A- Ay exchange, (-), (37).

C vector of soluble concentration {M,H (6).

G(x, 1) soluble concentration of componeit (mol per

Liter of liquid), (1) Index | is omitted inl-
component system, (A 1. 1).
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13 Notation

Cx vector of soluble concentratioirs constant state
between k- and (k+1)-wave, (figure 1), (A 5. 1).

Coo(X, 1) time asymptotic soluble concentratigmofile,
(mol per Liter of liquid), (A 1. 3).

Cs soluble concentrationector right of conentra
tion jumpat t = 0, (mol per Liter of liquid), (4).
Scalar ¢ is used for the 1-componesitstem (A
1. 6).

C. soluble concentration vector ledt conentration
jump at t = 0, (mol per Liter of liquid)(4).
Scalar cis used fothe 1-component system (A
1. 6).

composition
space spacethe axes of which are the concentrations
M and H (Figure 3).

G(x, 1) concentration of component; An the surface,
(mol per Liter of system volumef2). Index j is
omitted in 1-component system, (A 1. 1).

Ci*(0) equilibrium concentration ofomponent A on
the surface, (mol per Liter of systevolume)
(2), except in eqgs. (37 (99), wherec;*(c)
meanghe concentration of a particular surface
species. Concérationof compment A on sur
face is sum of the concentrations of theface
species containing jAIndex j is omitted inl-
component system, (A 1. 2).

D lumpedhydrodynamic dispersion/molecular dif
fusion coefficient, (rAyr), (1).

D* coefficient ofmolecular diffusion in water (0.16
mlyr), (A 1. 10).

5 dispersivity, (m)s = L/100, (A 1. 10).
0%(c) measure of suraf concentrations adsorbed on

site typea, (-), (64).a is omitted if there is only
one site type, (101), (A 3. 3).
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13 Notation
e

€]

h(e)

hy(€)

H(

H(M, H)

H;(€)

H:(2)

H+

He.
HFO

(0/0cy, dldcy, ...,0l0cye) = grad, (A 5. 10).

relaxation time for component; A(yr), (2). Itis
the time during which 37% dhe equilibrium
adsorbed concentration is reachéudex j is
omitted in 1-component system, (A 1. 2).

vector ofsoluble concentrations;(g), (5) and
(8).

component j oh(g), h(g) is concentration j¢x,
t) of A in soluble phase as function of the
speed = x/t of theconcentréion, (mol per Liter
of liquid), (5).

vector ofadsorbed concentrations(g), (7) and
(8).

adsorbed proton concentratigmol per Liter of
system volume), (73).

component of H(g), Hj(¢) is adsorbed concen
tration C*j(x,t) of component Aas dunction of
the speed = x/t of thecorcentration, (mol per
Liter of system volume), (7) and (8).

total proton concentration in solution asuac
tion of the speed = x/t, (mol per Liter of lig
uid), (87).

proton activityin pre-equilibrant (pore water be
fore arrivalof abrupt concentration change, see
(4)). H- = H(x = 0, t = 0), (molper Liter of
liquid), (85).

proton activityin feed (see (4)), H= H(x < 0, t
= 0), (mol per Liter of liquid), (88).

Hi(x <0, t =0), (86), (mol per Liter of liquid).

concentration of hydrous ferrioxide, FeOs,
(mol per liter of system volume), (A 2. 38).

index specifying chemical component;,A(-),

(1).
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13 Notation
|

lk(c)

L(0)
M(¢)

M(M, H)

M.

ionic strength, (mol/L), paragraph after (56).
identity matrix, (29).

index specifying wave, thelowest wave has k =
1, (figure 1, (13).

threshold concentration eémobilizing compe
nent for accumulatioonf contaminant, (mol per
Liter of liquid), (96) and (98).

1-component Langmuir adsorptiogonstant,
(mol/L) L, (A 2. 21).

equilibrium constant for formation oKOH»
surface complex from XOH artd, (L/mol), (49).

equilibrium constant for formation of X®ur
face complex from XOH and H, (mol/L), (50).

Jacobi matrix of isotherms evaluatatilocdion
c in composition space, (-), (29).

water dissociation constant, (1G4moF/L2),
(87).

left eigenvector oR(c) corresponding teigen
valuepg(c), (68).

length of column of porous medium, (m),
(paragraph after (1) and figure A 1).

matrix of left eigenvectork(c), (69).

soluble concentratioof metal, (mol per Liter of
liquid), (77).

adsorbed metal concentratidqmol per Liter of
system volume), (74).

M(x = 0, t = 0), (83).
M(x < 0, t = 0), (86).
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13 Notation
No

P
PZC

r(h)

rk(c)

R(c)

Rk(0)

p(c)

pk(C)

number of chemical components, (-), (1).
electrostatic correction factor, (-), (42) and (57).

point of zero charge on hydrous ferdggide in
pristine water, i.e. atd 0.0001 mol/L, (57).

porosity of medium, (-), (1).
right eigenvector oR evaluated at = h, (33).

right eigenvector ofR(c) corresponding to
eigenvalugx(c), (33).

retardation matribevaluated at location in cor
certration space, (30). Theatrix degenerates to
the retardationf the traveling wave, R(c), in the
1-component system, (A 1. 6).

retardation of k-rarefaction wave, ((23) and k
shock, (24). Rof k-rarefaction wave is equal to
the kth eigenvalugy of r, butRx of k-shock is
kth root of Rankine-Hugoniotelation (24) or
(26).

eigenvalue oR(c), also called'retardation”, (},
(32).

retardation of k-rarefaction wave, (-), (34).
x-at, (m), (Al 4).

speed of traveling wave, (m/yr), (A 1. 5).
speed of k-shock, (m/yr), (24).

time variable, (yr), (1).

tortuosity, (-), (A 1. 10).

flux of water, (m/yr), (1).

speed of water, (m/yr), (A 2. 38).
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w; (k)

w(Ck)

X0
XOH
XOH,

XOHM

XOM

13
&k

References

k-Riemann invariant evaluatedat (-), (65) and
(67).

vectorof Ng Riemann invariants evaluated Gt

(), (70).

spatial variable (m), (1).

concentration of adsorption sites of type(mol
per Liter of systemvolume), (64). Indexa is
omitted when there is only one site type, (39).

concentration of empty sites, (mol per Litafr
system), (50).

concentratiorof sites covered with one proton,
(mol per Liter of system), (49).

concentration of sites covered with tywootons,
(mol per Liter of system), (49).
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proton bridge, (mol peLiter of system), (44)
and (59).

concentration of sites covered with mei@hol
per Liter of system), (51).

speed of concentratiarn) (m/yr), (5).

speed of k-rarefaction wave, (m/yr), (13).
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