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Abstract

      Species on porous media surfaces exposed to aqueous solutions
can still not yet be determined unambiguously. The influence of these
ambiguities on contaminant transport needs to be understood. Here
methods of multicomponent chromatography are presented that allow
to visualize the effects of the ambiguities. The Riemann problem is
solved to a large extent based on the mathematics of non-linear
hyperbolic differential equations, before the problem is handed over
to the computer. Since thereby the computational efforts are kept
compatible with the corresponding limitations in a chemical
laboratory, this method has been used for decades in chemical
engineering. The method is illustrated for various multicomponent
isotherms, e.g. the one underlying surface complexation models as
implemented in the MINEQL family of programs.

1 Introduction

     Methods to determine the surface species on porous media in
contact with aqueous solutions have been improved for more than
three decades. But still our understanding of the surface chemical
processes is based on models the applicability of which we cannot
predict (Lützenkirchen 2012, Payne et al. 2013). This is of particular
concern when it comes to assessing the long-term safety of high-level
radioactive waste repositories: We need to evaluate how our lack of
understanding will affect our predictions of contaminant migration.
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Two principally different paths have been taken to predict
contaminant migration. On both paths transport equations governing
contaminant migration are solved. Path 1 uses numerical solution
techniques for equations that represent our understanding of the
processes as closely as reasonably achievable. Path 2 uses analytical,
i.e. mathematical, solutions of simplified versions of the transport
equations that we think represent general migration features.

Path 1
Affordable computers have become capable of numerically calculating
transport of several chemically and biologically interacting compo-
nents in porous media. Examples of such components are natural
ions, ligands, nutrients and contaminants. Many transport codes have
been written, as is evident from reviews (e.g. Kirkner and Reeves,
1988; Reeves and Kirkner, 1988; Kinzelbach et al., 1989). Numerical
difficulties and long computation times have been addressed in
various ways, depending on the choice of the geochemical problem.
Subroutines, e.g. PHREEQE,  MINEQL or other members of the
MINEQL family, such as MINTEQ, GEOCHEM or HYDROQL, are
called at each time step to establish chemical equilibrium in all nodes
(Walsh et al., 1984; Cederberg et al., 1985; Novak et al., 1988;
Berninger et al., 1991). When applied to the nodes sequentially, these
subroutines need more than 90% of the computation time. Soon
excessive time is spent in these subroutines when the number of
nodes is increased, unless the computer code has been vectorized,
thus being able to establish chemical equilibrium in all nodes at once
(Vogt, 1990).

Path 2
Lichtner (1992) and Ortoleva and coworkers (1987) went in another
direction, avoiding super- or mini-supercomputers by introducing
very potent approximations in the transport equations for the case of
mineral precipitation and dissolution.

This paper will deal with the visualization of the 1-dimensional
migration of chemically interacting water constituents disregarding
diffusion and dispersion. Here path 2 uses the mathematics of non-
linear sets of hyperbolic partial differential equations in one space co-
ordinate and time (Lax, 1973) and multicomponent chromatography
(Helfferich and Klein, 1970; Rhee et al., 1989). Both, mathematics
and chromatography provide tools that help us understand and design
numerical calculations as well as experiments when transport is
purely advective and dominated by adsorption. The procedure to
calculate the concentration profile is simpler and faster than with the
above mentioned numerical models, largely because general
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properties of the solution of the problem are derived from mathe-
matics rather than left to be found by the computer (Schweich et al.,
1993). This way of proceeding has been used successfully in the field
of chemical engineering (Helfferich, 1967; Hwang et al., 1988) and
environmental sciences (Charbeneau, 1981, 1988; Bryant, 2000,
Prigiobbe, 2012a, 2012b, 2013). The purpose of this paper is to
demonstrate its potential in the latter field, i.e. to predict contaminant
waves propagating through porous media.

     After having introduced the transport equations  (Sect. 2) and the
concept of the centered waves (Sect. 3),  this paper will

(1) present several solution techniques for hyperbolic differ-
ential equations, i.e.

analytical integration of the transport equations
(Sect. 4),
the use of the coherence conditions (Sect. 5),
the use of the Jacobi matrix of the isotherms (Sect. 6),
and

(2) use this method to demonstrate the relationship that exists
between the chemical interactions on the one hand -as rep-
resented by some adsorption isotherms and complex for-
mation constants- and on the other hand the concentration
profiles (Sect. 7). In this context, isotherms will be pre-
sented for

ligand exchange (Sect. 7.1.1),
surface bridge formation (Sect. 7.1.2),
adsorption on variable charge surfaces at low ionic
strength (Sect. 7.1.3).

The properties of the waves in systems with some of
these isotherms will be used to solve the system of trans-
port equations by matrix inversion (Sect. 7.2), introducing
a generalized chemical component, the Riemann invariant
(Sect. 7.2.3).

(3) exemplify the presented analytical solutions with two-
component systems (Sect. 8), because reliable adsorption
data have been compiled mostly for such systems.

     Chemists have been using speciation plots side by side with nu-
merical speciation models to gain insight into the influence of com-
plex formation constants in batch systems (see e.g. chapters 4.1 - 4.3
in the textbook by Stumm and Morgan (1981)). Multicomponent
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chromatography provides us a similar graphical tool to help us un-
derstand the influence of thermodynamic constants on advective
transport and to give us information we cannot get from a numerical
transport model. This will be the topic of the second and third part of
this paper.

2 Transport Equations

     Migration of N0 chemical components Aj (j = 1, 2, ..., N0) in
porous media is described by a set of N0 mass conservation laws. In
the absence of precipitation or dissolution of solids the conservation
laws have the form:

∂
∂t

 {φcj(x,t) + Cj(x,t)}  + ∂
∂x

 (vw - D ∂
∂x

) cj(x,t) = 0     (j = 1, ..., N0)  
. (1)

cj is the soluble and Cj is the adsorbed concentration of component Aj.

The constants φ ≈ 0.3, vw ≤ 0.5 m/yr and D = 0.16 (m2/yr) τ + δ ξ are
the volumetric fraction of water, the flux of water and the hydrody-
namic dispersion/diffusion coefficient of Aj in the porous medium,
respectively. τ (≈ 0.3) is the tortuosity, δ (units: m) is the dispersivity
(≈ L /100, L (units: m) being the length over which transport is calcu-
lated) and ξ is the speed of the concentration cj (for definition of ξ see
(9) below).

     The adsorbed concentration Cj of component Aj relaxes to the
value Cj

*, the so-called "isotherm", with a relaxation time ε j  (first
order kinetics)

∂
∂t

 Cj(x,t) = 1ε j
 {Cj

*(c1, c2, ..., cN0) - Cj(x,t) }     (j = 1, 2, ..., N0)
. (2)

     This paper will discuss concentrations profiles when the flux of
water is typically vw < 0.5 m/yr. Adsorption kinetics is then fast
enough and has a negligible effect on the shape of the profile if ε < 1
week (see appendices,  12 A. 1 and 2). Therefore Cj = Cj

*  will be as-
sumed henceforth.

     When also the diffusive term in (1) is neglected, the calculated
concentration profiles will lack smoothness, but are expected to re-
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main unchanged otherwise. Because this research aims at finding
trends caused by chemical interactions, the assumption D = 0 seems
appropriate.

     The resulting set of partial differential equations is hyperbolic and
-due to the isotherm Cj * (c1, c2, ..., cNo)- non-linear in the concentra-
tions cj .

∂
∂t

 {φcj(x,t) + Cj
*(c1,c2, ..., cN0)}  +  vw ∂

∂x
 cj(x,t) = 0     (j = 1, 2, ..., N0)

(3)

     Without giving the proofs, the next sections will present two basic
phenomena in hyperbolic systems,

the centered wave, its representation in concentration space
and its transport equation, and

the speed or retardation of the centered wave.

     The first method presented below for finding solutions of the
transport equations is connected with the equation defining the speed
of a concentration. These definitions are called "coherence condi-
tions" in chromatography. Three further solution methods will be pre-
sented thereafter.

3 Riemann Problem and Centered Waves

     Solutions of (3) can be built from so-called "centered waves"
(Helfferich and Klein, 1970).

     There are two types of centered waves (Lax, 1973):

Rarefaction waves (called "diffuse waves" in chromatogra-
phy). They meet the differential equations (3). This is the type
that will mostly be dealt with here.

Shocks (called "self-sharpening waves" in chromatography).
They meet the Rankine-Hugoniot relations (see (24) below),
which are called "integral coherence conditions" in chromato-
graphy (Helfferich and Klein, 1970).



6 3 Riemann Problem and Centered Waves

     Temple (1983) has shown that shocks and rarefaction waves co-
incide in two types of multicomponent systems with constant ad-
sorption parameters and negligible soluble complexes: (1) when ad-
sorption follows a multicomponent Langmuir isotherm (see (46) be-
low) or (2) when adsorption can be described as an exchange process
(see (41) below).

     Centered waves are the solution of the Riemann problem, i.e. the
response of the system (3) to a single abrupt change of the chemical
composition of the incoming water ("feed") (from c+ to c-) . Let x = 0
be the initial location of this concentration jump, and assume that the
pore water flows in positive x-direction:

c(x, t=0) = {
c+  for x ≥ 0    (pre-equilibrant)

   c-  for x < 0     (feed)                
,     c = 

c1

 ...
cN0 . (4)

     An example of centered waves in a two-component system (with
components M and H) is shown in figure 1.

When there is no competition (figure 1a), H changes without M
noticing it and vice versa. Thus each wave corresponds to a compo-
nent. In figure 1b, M and H compete for adsorption sites, and the
concentrations of both M and H change in both waves.

     The general structure of the solution of the Riemann problem has
been described and proved by Lax (1957): The discontinuity (4) de-
velops into a sequence of constant states separated by centered waves
(figure 2). The former are regions of fixed concentration. The heavy
lines in figure 1 are the boundaries of the constant states. The concen-
tration changes from ck to ck+1 across the k-wave, either continuously
as shown in figure 2 for the 1-, 2- and N0-waves, which are
rarefaction waves, or abruptly as shown for the (N0-1)-wave, a shock.
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Fig. 1: Centered waves in a system with component M and H (a) without
and (b) with competition between M and H for adsorption sites. The con-
centration jump c - = {M-, H-} -> c+ = {M+, H+} at time t = 0 develops
into two waves.

     Because all waves originate from the initial discontinuity at x = 0,
for times t > 0 the vector of concentrations c does not depend on x
and t separately, but instead on the speed, the ratio ξ = x/t.

c(x,t) = h(ξ). (5)

A concentration c(x,t) = h(ξ) is constant on the line x/t = ξ, the
"characteristic" (light or heavy lines in figure 2).
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c 1
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Fig. 2: In a system with N0 components an initial discontinuity c-→ c+ decom-

poses with time into a fan of N0 concentration changes (centered waves, bounded

by heavy lines), separated by N0 - 1 constant states c1, c2, ..., cNo-1. Notation
has been chosen according to conventions in mathematics.

     It is helpful to represent the concentration profile c(x,t) = h(ξ) in
concentration space (called "composition space" by Helfferich and
Klein (1970)). As an example, figure 3 shows the two waves of figure
1b. The concentration space has two axes, the M- and the H-axis. The
constant state c- = {M -, H-} is connected by the 1-wave to the middle
state c1 = {M 1, H1}, which in turn is connected by the 2-wave to the
constant state c+ = {M +, H+}.

     By definition of the 1-wave, point {M 1, H1} moves on the 1-wave
when point {M+, H+} is varied and point {M-, H-} remains fixed. The
definition of the 2-wave is similar: It is the curve on which point {M1,
H1} moves when point {M-, H-} is shifted in {M, H} space while
point {M+, H+} stays immobile.

     The shapes of the waves reflect the chemical interactions in the
system. In figure 2 they are arbitrarily represented as lines. The cor-
respondence between their shape and the thermodynamic constants is
the subject of the second part of this paper (sections 7 - 9).
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Fig. 3: Waves (shown arbitrarily as lines) and constant states (points (-), (1) and
(+)) in 2-dimensional composition space. Point (-) has the coordinates {M-, H-},
(+) has the coordinates {M+, H+}, and (1) represents {M1, H1}.

     For centered waves, the transport equations (3) become ordinary
differential equations. With

ξ = x
t

the partial derivatives become total derivatives

∂
∂x

  =  ∂ξ
∂x

 d
dξ

  =  1
t
 d
dξ

 
,

∂
∂t

  =  ∂ξ
∂t

 d
dξ

   = - x

 t2
 d
dξ

  = - ξ
t
 d
dξ , (6)

and with these the transport equations can be written as

(vw

φ
 - ξ) hj

' - ξ
φ

 Hj
' = 0     (j = 1, 2, ..., N0)

, (7)

where the prime designates the derivative with respect to ξ, and the
vectors of soluble and adsorbed concentrations, respectively, are de-
fined as



10 3 Riemann Problem and Centered Waves

h(ξ) = 

h1(ξ)

 ...

hN0(ξ)

 = 

c1(x,t)

 ...

cN0(x,t)

;     H(h(ξ)) = 

H1(h(ξ))

 ...

HN0(h(ξ))

 = 

C1
*(c(x,t))

 ...

CN0
* (c(x,t)) .(8)

4 Analytical Integration of Transport Equations

     If the sum of the adsorbed component concentrations Hj  is a con-
stant, e.g. a (constant) multiple of the concentration of adsorption
sites,

Hk∑
k=1

N0

 = n XT
(9)

or

Hk
'∑

k=1

N0

 = 0
,

the sum of the set of equations (7) is simply

(vw

φ
 - ξ) hk

'∑
k=1

N

 = 0
. (10)

Possible solutions are

ξ =  vw

φ
   together with   Hj

' = 0     (non-retarded wave)
, (11)

hk
'∑

k=1

N0

 = 0     (retarded waves)
. (12)

     When the number N0 of components is two, the waves are readily
plotted as contour lines. The retarded wave is the line on which h1 +
h2 is constant, the non-retarded wave is the line on which any ad-
sorbed component concentration Hj  is constant. High level pro-
gramming languages, e.g. Mathematica (Wolfram Research, 1992),
make it easy to plot contour lines of these conserved quantities, h1 +
h2 and Hj , in concentration space (see figure 8 below).
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5 Coherence Conditions, Rankine-Hugoniot Relation
and Retardations

     Solving (7) for ξ = ξ(h) we get

ξ  =  vw

φ
  1

1 + 1
φ

 
Hj

'

hj
'

  =  vw

φ
  1

1 + 1
φ

 
dHj/dξ
dhj/dξ

  =  vw

φ
  1

1 + 1
φ

 
dHj

dhj

         (j = 1, ..., N0)

.

     The directional derivative dHj /dhj  (i.e. the change of the adsorbed
concentration across the wave,  dHj /dξ, divided by the change of the
soluble concentration, dhj /dξ) depends on the wave along which it is
evaluated. Let k be the index for the k-wave, then for any k (1 ≤ k ≤
N0)

ξk  =  vw

φ
  1

1 + 1
φ

 
dHj/dξk

dhj/dξk

          (j = 1, 2, ..., N0)

. (13)

     The k solutions of (13), i.e. of

dH1/dξ
dh1/dξ

 = dH2/dξ
dh2/dξ

 = ... = dHN0/dξ
dhN0/dξ (14)

or of

dH1

dh1

 = dH2

dh2

 = ... = dHN0

dhN0 (15)

are also solutions of the set of conservation laws (3). (15) has been
given the name "differential coherence condition" in chromatography
(Helfferich and Klein, 1970).

     If the isotherms are known functions Hj(h) = Cj * (c) of the vector
of soluble concentrations, the directional derivative is

d
dξ

  = ∂
∂hj

 
dhj

dξ
∑
j=1

N0

(16)
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and (14) can be integrated. The k roots of (14) are the k solutions of
the Riemann problem.

     The procedure will be illustrated for the general two-component
system. We start with the differential coherence condition in the form
(14) and then apply the chain rule (16) to expand d/dξ:

dH1/dξ
dh1/dξ

  =  dH2/dξ
dh2/dξ (17)

dH1/dξ
dh1/dξ

  =  ∂H1

∂h1

 + ∂H1

∂h2

 dh2/dξ
dh1/dξ

  =  ∂H1

∂h1

 + ∂H1

∂h2

 dh2

dh1 (18)

dH2/dξ
dh2/dξ

  =  ∂H2

∂h1

 dh1/dξ
dh2/dξ

+ ∂H2

∂h2

   =  ∂H1

∂h1

 dh1

dh2

+ ∂H1

∂h2

 
(19)

With (18) and (19) equation (17) becomes a quadratic equation for
dh2/dh1 with known coefficients p and q

(dh2

dh1

)
2
 + p  dh2

dh1

  +  q  =  0
(20)

where

p  =  

∂H1

∂h1

 - ∂H2

∂h2

∂H1

∂h2

, q = -  

∂H2

∂h1

∂H1

∂h2 (21)

     There are two roots of (20), one for the 1-wave and the other for
the 2-wave

dh2

dh1

 = - p

2
 ± p2

4
 - q

. (22)

     High level programming languages such as Mathematica
(Wolfram Research, 1992) can be readily used to calculate the waves
from (22). These languages give analytical functions h2(h1) when
they can find them, and interpolating polynomials otherwise.
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     Similarly, the speed of the k-wave can be calculated, once the so-
lutions hk(ξ) = {h1(ξ), h2(ξ), ..., hNo(ξ)) are known. According to
(13), the speed of the k-rarefaction wave is by a factor (the so-called
"retardation")

Rk = 1 + 1
φ

 
dHj/dξk

dhj/dξk

     (j = 1, 2, ..., N0)
(23)

smaller than the pore water velocity vw/φ. Note that (23) states that all
components Aj  (j = 1, 2, ...,  N0) experience the same retardation Rk
in the k-wave.

          Rarefaction waves are not the only type of solution of the mass
conservation law (3). The existence of the second type, the shock, will
not be proved. The proof of the existence of shocks (Lax, 1957) will
be replaced by a plausibility argument.

     Suppose that the retardation Rk(h) decreases with increasing con-
centration h. When the rear end of a wave (e.g. point c- of the 1-wave
in figure 2) has a lower retardation than its front (point c1 in figure 2),
the rear will travel faster than the front. The corresponding
concentration profil c(x, t) will become steeper (sharper) as the wave
proceeds.  A concentration wave steepens until it has developed a dis-
continuity and is just about to break (in the sense a water wave
breaks). From then on all concentrations travel with the same speed.
The resulting concentration discontinuity is the shock. Contrary to a
concentration wave, the water wave develops beyond this point and
actually breaks, i.e. the portions in the upper part of the wave overtake
the ones in the lower part. The shock wave travels with a speed given
by the conservation of mass across the shock.

     Appendix 12 A. 3 shows that the mass balance involves finite
rather than infinitesimal quantities, if the wave is a shock (Lax, 1973).
The speed of the shock is given by the Rankine-Hugoniot relation

σk = vw

φ
 

∆cj

∆(cj + 1
φ

 Cj
*)

 = vw

φ
 1

1 + 1
φ

 
∆Cj

*

∆cj

 = vw

φ
 1
Rk

         (j = 1, 2, ..., N0)

, (24)

where the symbol ∆ denotes the change across the k-shock. In math-
ematics the symbol || || is often used instead of ∆. Using h and H in-
stead of c and C*
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σk  =  vw

φ
  1

1 + 1
φ

 
∆Hj

∆hj

          (j = 1, 2, ..., N0)

. (25)

The set of equations

∆H1

∆h1

 = ∆H2

∆h2

 = ... = ∆HN0

∆hN0 (26)

is called "integral coherence condition" in chromatography and is
used to calculate the concentration changes ∆hj  across the shocks
(Lax, 1973).

     The third solution method is based on the Jacobi-matrix of the ad-
sorption isotherms C* j(c). It is the most general of the solution
methods.

6 The Jacobian and the Retardation Matrix

     Because the adsorbed concentrations Hj = C*
j(c) depend only on

the soluble concentrations, the derivatives with respect to ξ could be
re-written using the chain rule (16). The transport equation (7) be-
comes then

(vw

φ
 - ξ) hj

' - ξ
φ

 
∂Cj

*

∂ck
∑
k=1

N0

 hk
'  = 0

, (27)

or -after division by ξ and rearrangement- in matrix form

 {I + 1
φ

 Kd} h'  = vw

φ
 1
ξ

 h' 
. (28)

I is the identity matrix and Kd is composed of the partial derivatives
of the adsorption isotherms Cj

*
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I = 

1 ... 0

... 1 ...

0 ... 1

,     Kd(c) = 

∂C1
*

∂c1

... ∂C1
*

∂cN0

... ... ...

∂CN0
*

∂c1

... ∂CN0
*

∂cN0 . (29)

I will introduce the matrix R(c), the "retardation matrix":

 I + 1
φ

 Kd (c) = R(c) 
. (30)

      With the abbreviation (30) the system of transport equations (7)
can be written as an eigenvalue problem

R h'(ξ) = vw

φ
 1
ξ

 h'(ξ)
. (31)

This set of equations is satisfied when

ρ(h) = vw

φ
 1
ξ(h) (32)

is an eigenvalue of the retardation matrix R evaluated at the point c =
h in composition space, and when h', the change of h, is parallel to the
right eigenvector corresponding to ρ(h)

h' = γ r(h). (33)

I will normalize r  such that γ = 1.

     The system (7) is genuinely nonlinear, and the direction of r  is
chosen such that it points in the direction of decreasing retardation

r  grad ρ(h) < 0
h' grad ρ(h) < 0     (rarefaction wave), (34)

where grad = {∂/∂c1, ∂/∂c2, ..., ∂/∂cNo} is the change across the wave.
For example, in figure 3 the change of the retardation at c- in direction
to c1 is grad ρ1(c-), where the index on ρ indicates the wave.  Fur-
thermore, if -as assumed in figure 3- the waves are lines, r1(c-) and
h1'(c-) are vectors that are colinear with the 1-wave. If the retardation
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ρ1(h1) of the 1-wave decreases from c- to c1, the vectors r1(c-) and
h1'(c-) point from c- to c1.

     For a shock, the retardation increases in the direction of h':

h' grad ρ(h) > 0     (shock).

     The retardations ρj(c) will be arranged in decreasing order. None
of the retardations is smaller than 1:

ρ1 ≥ ρ2 ≥ ρ3 ≥ ... ≥ ρN0 ≥ 1. (35)

     According to (33) the change hk' of a concentration hk is parallel
to the k-eigenvector rk at point hk. The k-rarefaction wave is the entity
of all such changes.  It follows from that the k-rarefaction wave is the
curve that is everywhere tangential to rk and can be constructed with a
suitable Runge-Kutta method (Zielke, 1993). Such methods are in-
corporated in the high level computer languages AVS (Application
Visualization System (International AVS Center)) or Mathematica
(Wolfram Redearch, 1992). AVS constructs the k-wave on the
computer screen after having received the vector field rk(c) and the
user has pressed the corresponding button.

7 Topology of Waves for Multicomponent Langmuir
Type Isotherms

7.1 Isotherms

     Three Langmuir type isotherms will be presented here, i.e. for
multicomponent ligand exchange, for adsorption via surface bridge
formation, and for surface complexation on variable charge interfaces
at low ionic stregths. Let N0 be the number of adsorbed species A1,
A2, ..., ANo . The adsorptive bond is described by a set of parameters
that are called "separation factors" αιj  or adsorption constants kj ,
depending on the adsorption process.

7.1.1 Ligand Exchange
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     Unlike ion exchange processes, in which the surface bond is
electrostatic, surface complexation is a predominantly chemical pro-
cess. Complex formation -be it in solution or on surfaces- can bind
electrically charged species together even if they carry charges of the
same polarity. The surface complexation process changes the charge
of surfaces. Thus, superimposed on the fixed chemical bond is an
electrostatic bond that varies with the surface coverage, and thus with
the composition c of the solution (Dzombak and Morel, 1990).

     Separation factors αiN describe the exchange on the surface of
ions or ligands AN and Ai  (see figure 4):

AN + Aj = Aj + AN,     (j = 1, 2, ..., N0, j ≠ N). (36)

N N1 1 2 1 2 1 1 2 10 0

Fig. 4: Schematic of surface when adsorption process is ion or ligand exchange.
Sites are occupied by components (ligands) A1, A2, ..., ANo, represented by the
numbers 1, 2, ..., N0. The adsorbed concentrations are described by isotherm (41).
If cN or the sum of the soluble concentrations of the adsorbing species is con-
stant, the isotherm degenerates to a Langmuir type isotherm (46).

    An example is the surface complexation of heavy metal cations
M2+ on hydrous ferric oxides (M2+ = Ag2+, Ca2+, CrOH2+, Cu2+,
Ni2+, Pb2+, Sr2+ and of SrOH+ ) (Dzombak and Morel, 1990). Let X
represent the crystal lattice of the oxide and O the layer of oxygen
atoms at the solid-liquid interface. The surface species involved in the
adsorption process are then X-OH and X-OM+. The adsorption reac-
tion is

X-OH + M2+ = X-OM+ + H+. (37)

     Using the symbol Cj* for the concentration of the surface species
Aj  and cj  for the concentration of the adsorbing species, the mass ac-
tion law for the adsorption reaction (36) is

Cj
*(c) = α j N CN

* (c)
cN

  cj ,     (j = 1, 2, ..., N0) (38)
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     Note that αNN = 1. Because all surface sites are assumed to be
filled, the sum of the surface species concentrations is equal to the
concentration of surface sites

Cl
*(c)∑

l=1

N0

 = XT = CN
*

cN
 α lN ∑
l=1

N0

cl
(39)

or

CN
*

cN
 = XT

α lN ∑
l=1

N0

cl
. (40)

After replacing CN* /cN in (38) with the expression in (40) we get the
isotherm

Cj
*(c) = XT 

α jN cj

α lN cl∑
l=1

N
,     (j = 1, 2, ..., N0)

. (41)

     Note that the selectivity coefficients α jN depend on the electric sur-
face charge. If the latter is variable -as it is on metal oxides- it will be
separated from the α 's and the selectivity coefficient will be written as
α jN PL

∆z with

PL = exp (- FψL

RT
). (42)

∆z is the change of the charge of the adsorbing layer L (in units of the
electric charge, e = F/NA, NA being the number of particles in a mol)
in the surface complexation reaction. ∆z is + 1 for reaction (37) in-
volving the exchange of a doubly charged metal ion with the proton.
ψL (unit: Volt = Joule/Coulomb) is the electrostatic potential in the
adsorbing layer L on the oxide, F (96485 Coulomb/mol) is the Fara-
day-constant, R (8.31 Joule/(mol K) is the general gas constant and T
(unit: K) is the absolute temperature.

     The electrostatic correction factor is a simple function of pH at low
ionic strengths and small metal concentrations in solution.  In section
8 it will be shown that the isotherms assume a particularly simple
form in that case.
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7.1.2 Surface Bridge Formation

     Adsorption can be the formation of bridges between a surface li-
gand AN and components Aj  (see figure 5). The surface species AN is
called "empty surface site". It is thus not counted among the N0 sur-
face species ANAj .

AN + Aj = ANAj,     (j = 1, 2, ..., N0) (43)

N N N N N N N N N N N

1 1 2 1 2 1 1 2 1

Fig. 5: Schematic of surface when adsorption process is bridge formation between
a component (ligand) AN and components A1, A2, ..., AN-o.  The surface sites AN
are sometimes called "empty". Adsorption isotherms for bridge formation are of
Langmuir type (46).

     On oxides AN is sometimes written as X-OH. An example is the
surface complexation of M2+ = Ba2+, Ca2+, Sr2+ (Dzombak and
Morel, 1990)

X-OH + M2+ = X-OHM2+. (44)

     Adsorbed species concentrations are proportional to C*
N and cj

(the soluble concentration of the adsorbed species). The mass action
law here is

Cj
*(c) = kjCN

*  cj,     (j = 1, 2, ..., N0, j ≠ N). (45)

The concentration C* N of the empty sites can be expressed as a frac-
tion of the total concentration of sites, similarly as it was done in (38).

Cl
* = ∑

l=1

N0

XT = CN
*  (1 + kjcj∑

l = 1
l ≠ N

N0

)

or
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CN
*  = XT

1 + kjcj∑
l =1

l ≠ N

N0

.

Thus

Cj
*(c) = XT 

kj cj

1 + kl cl∑
l=1

l ≠ N

N0
,     (j = 1, 2, ..., N0, j ≠ N)

. (46)

Again, the adsorption constants kj  depend on the electrostatic poten-
tial in the adsorbing layer, and when the potential varies due to the
variation of the surface charge, its effect will be separated from the
constant and the adsorption constant will be written as kj  PL

∆z:

     The concentration C* N of empty sites decreases with increasing
concentrations c1, c2, ..., cNo as more and more surface bridges are
built. The same happens obviously when adsorption is an exchange
process (36) and

(1) one adsorbing species, e.g. AN, has a constant concentra-
tion in solution. In that case, the isotherm (41) degenerates to
the Langmuir isotherm (46).

(2) when the sum of the soluble concentrations of the ex-
changing species is a constant, c

cl∑
l = 1

N0

 = c
. (47)

Then according to (41) the adsorbed concentrations are as given in
the following equation (48)

Cj
*(c) = XT 

α jNcj

cN + α lNcl∑
l=1

l ≠ N

N0
  = XT 

α jN

c
 cj

1 + α lN -1
c

 cl∑
l=1

l ≠ N

N0

. (48)
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7.1.3 Adsorption on Variable Charge Surfaces at Low Ionic
Stregths

     The concentrations of surface species on variable surface charge
oxides can be calculated from the following adsorption mass action
laws, similarly as in the two previous sections. Let H and M be the
free proton and metal concentrations in solution, XT the total concen-
tration of adsorbing sites on the variable charge oxide surface and k1,
k2 and α the adsorption constants for one, two protons and the dou-
bly charged metal -all asumed to adsorb in the same plane (Dzombak
and Morel, 1990), then the mass action laws and the surface site bal-
ance are

XOH2 = k1 P XOH H, (49)

XO = k2

P
  XOH 1

H, (50)

XOM = α P XOH M
H , (51)

XT = XOH2 + XOH + XO + XOM. (52)

Combining these four equations, we find the isotherms

XOH2(M, H) = XT k1P H2

α P M + H (1 + k1P H) + k2/P, (53)

XOH(M, H) = XT H
α P M + H (1 + k1P H) + k2/P, (54)

XO(M, H) = XT k2/P
α P M + H (1 + k1P H) + k2/P, (55)

XOM(M, H) = XT α P M
α P M + H (1 + k1P H) + k2/P. (56)

    At trace concentrations of the metal, P is a function only of pH and
the ionic strength I = 1/2 ∑ zi

2 ci , where i designates any of the sol-
uble species Ai  with charge zi  present in the system. Dzombak and
Morel (1990) have tabulated P.
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     If, at small ionic strengths I ≤ 10-4 M, the correction factor is ap-
proximated by

P = 

k2

k1

H
 = PZC

H , (57)

the curves of the approximation and the true P coincide, as is
demonstrated in figure 6. At the ionic strength  I = 10-1 M where
many adsorption experiments have been made, the approximation

lo
g 

P pH

I = 10
- 4

M

I = 10
-1

M

Fig. 6: Electrostatic correction factor P and its approximations Pa as a function of
pH for two ionic strengths I (after Dzombak and Morel  (1990)). At I = 10-4 M,
Pa and P coincide, at I = 10-1 M, Pa is the (straight) line.

P = (PZC
H

)
2/3

(58)

is good.

     A property of approximation (12) is the exact balance between
positive and negative surface charges in pristine water,

XOH2(M, H) = XO(M, H). (59)

The isotherms resemble the ones for exchange of two protons with
one metal ion (see (36) and (41)):
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XOH2(M, H) = XT k1P H2

α k2

k1

 M + (1 + 2 k1k2) H2

, (60)

XOH(M, H) = XT H2

α k2

k1

 M + (1 + 2 k1k2) H2

, (61)

XOM(M, H) = XT 
α k2

k1

 M

α k2

k1

 M + (1 + 2 k1k2) H2

. (62)

The exchange stoichiometry is reflected in the exponents of the free
metal and proton concentrations, e.g. (41) being the isotherm for an
exchange of one proton with one metal ion. (60) - (62) lead to an ana-
lytical solution of the set of transport equations (7). This solution is a
useful guide to systems with H-M exchange, which will be shown in
section 8.

7.2 Properties of Waves

7.2.1 Non-Retarded Waves

     A non-retarded wave appears on two occasions :

(1) The sum of the adsorbed component concentrations is
constant (see (9)).

(2) One or several components Aj  do not adsorb (Hj ' = 0 in
(7)).

     Condition (1) is characteristic of the isotherm (41). Connected
with this is a property of that isotherm : The surface speciation Cj *  (j
= 1, 2, ..., N0) remains unchanged when all concentrations cj  vary by a
common factor

Cj
*(c) = XT 

α jN cj

α lN cl∑
l=1

N0
 = XT 

α jN a cj

α lN a cl∑
l=1

N0
 = Cj

*(a c),     (j = 1, 2, ..., N0)

. (63)
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Because the equation of this non-retarded wave is c = a c+, the wave
lies on a line through the origin of composition space.

     Condition (2) is necessary for a non-retarded wave to appear in
systems in which adsorption of all components follows isotherms
(46) or (48). Unlike for the exchange process (36), the empty site AN
does not appear explicitely among the N0 species in the isotherm
(46), although it is part of the system. Therefore, any variation of c
causes Cj *  to change, or in other words: Hj ' ≠ 0 for any shift of c.
Hence, the non-retarded wave, vw/φ = ξ, is a solution only if one of the
Hj  itself is zero.

7.2.2 Waves are Lines

    Waves are particularly simple if all site types adsorb according to
class (41) and (46) isotherms (Temple (1983), Rhee et al. (1989))

Cj
*(c) = XT

α 
k j

αcj

δ
α
(c)

∑
α

     (j  = 1, 2, ..., N ≤ N0)

,

δ
α
(c) = b + k j

αcj∑
j=1

N0

(64)

where XT
α is the concentration of adsorption site type α, the constant

c2

c1

r1 r21-waves

2-waves

c-

'

' c+c+
c1

c-

c-

Fig. 7: Two-dimensional concentration space ("composition space") with some 1-
and 2-waves. Adsorption follows Langmuir isotherm (46). Wave velocity
increases in direction of right eigenvector rk (see (33)). The solution of the
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Riemann problem is the sequence of constant states (c- / c1 / c+) connected by the
1- and 2- waves (heavy lines). According to property (c), (c* -  / c1 / c*+)  is a
solution of another Riemann problem.

b has the value 0 or 1, and the adsorption constants kj
α are indepen-

dent from c (see appendix 12 A 3 for proof of the first two properties
and figure 7 for an illustration):

(a) The waves (shocks and rarefaction waves) coincide in con-
centration space.

(b) The waves (shocks or rarefaction waves) are lines (in con-
centration space).

(c) The waves (shocks or rarefaction waves) are invariant mani-
folds. This means that the k-wave is represented by the same
line independently from its starting point ck-1 as long as ck-1
lies on the line.

7.2.3  Analytical Solution for the Multicomponent System: The
Riemann Invariant

     The k-Riemann invariants are functions wj≠k(c) of the concentra-
tions and are defined as follows:

rk  grad wj = 0      (j = 1, 2, ..., k-1, k+1, ..., N0), (65)

where grad = {∂/∂c1, ∂/∂c2, ..., ∂/∂cNo}.

     Definition (65) means that across a k-wave only wk changes, while
the remaining N0 - 1 invariants wj ≠ k are constant. For example, w1
changes only across the 1-wave and remains constant across all
subsequent waves. More generally

wj(ck) = {  
wj(c+),     (j ≤ k)

 wj(c-),      (j > k), (66)

which means that if all N0 Riemann invariants wj  (with j = 1, 2, ..., N0)
are known for the initial and final states, c+ and c-, they are known for
any of the constant states ck.
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     Because wk changes only across the k-wave, wk can be visualized
as a generalized chemical component. If the components did not in-
teract on the adsorbing surfaces, the k-Riemann invariant were iden-
tical with the kth chemical components. The initial discontinuity c+ →
c- would develop with time into a series of waves, one for each
component, each experiencing its own retardation. Across each wave
only one component would change, all others remaining constant (see
figure 1a). Similarly, in the case of interacting components (see figure
1b), each wave experiences its own retardation, and across each wave
only one Riemann invariant changes. In their textbook Helfferich and
Klein  (1970) use the concept of the Riemann invariant, but do not
give the invariants this name, calling them H-function roots, instead.

     In appendix 12 A 3 it is shown that the waves are (straight) lines if
adsorption follows a multicomponent Langmuir isotherm or is an ion
exchange process with constant selectivity coefficients. Appendix 12
A. 4 shows that then the scalar product of the left eigenvector of the
retardation matrix and the concentration vector is a Riemann invariant

wj(ck) = l j(ck) ck, (67)

where the jth left eigenvector (corresponding to eigenvalue ρj) for
constant state ck is defined as

l j(ck) R(ck) = ρj(ck) l j(ck). (68)

     It is shown in appendix 12 A 4 that all left eigenvectors at any
constant state ck  are known. Introducing a matrix L

L(ck) = 

l1(ck)

.....

lN0(ck) (69)

the rows of which are the left eigenvectors of the retardation matrix
R(ck) and the vector of Riemann invariants

w(ck) = 

w1(ck)

.....

wN0(ck) , (70)
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we can restate the definition (67) as

 w(ck) = L(ck) ck. (71)

Because w and L are known, the concentration vectors of the constant
states, ck, can be calculated by inverting (71)

ck = L
-1(ck) w(ck). (72)

8 Waves in Two-Component Systems

          Mass action laws depend non-linearly on the concentrations. In
certain restricted areas of concentration space the behavior of a multi-
component system can therefore be interpreted in terms of two-com-
ponent systems, the contribution of the other components being neg-
ligible. Multicomponent transport in porous media might exhibit a
similar feature, and therefore thermodynamic adsorption data
-although mostly determined in two-component systems- provide
helpful, albeit non-complete, information for multicomponent sys-
tems. Dzombak and Morel's consistent set of thermodynamic data
(1990) describing adsorption of protons and a metal ion on hydrous
ferric oxides will be used here as an example.

8.1 Analytical Solution of the Transport Equations

     The proton concentration H adsorbed on an oxide, e.g. a hydrous
ferric oxide, is

H = 2 XOH2(M, H) + XOH(M, H) (73)

and the adsorbed metal concentration is

M = XOM(M, H), (74)

thus

M + H = XOM + 2 XOH2 + XOH, (75)
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and with XOH2 = XO (see (59))

M + H = XOM + XOH2 + XOH + XO = XT. (76)

To solve the transport equations (7) for the (M-H)-system

(vw

φ
 - ξ) M' - ξ

φ
 M' = 0

(77)

(vw

φ
 - ξ) Ht' - 

ξ
φ

 H' = 0
, (78)

where Ht is the total proton concentration (see below), we add (77)
and (78)

(vw

φ
 - ξ) (M + Ht)' - 

ξ
φ

 (M + H)' = 0
(79)

and use the fact that the sum (76) of the adsorbed metal and proton
concentrations is constant

(vw

φ
 - ξ) (M + Ht)' = 0

. (80)

There are two solutions of (80):

(M + Ht)' = 0 (81)

and

ξ = vw

φ
 
. (82)

After using (82) in (62) we know that the adsorbed metal concentra-
tion does not change across this non-retarded wave: XOM' = 0 or

XOM(M, H) = XOM(M+, H+). (83)

The adsorption isotherm (56) then fixes the relationship between M
and H. With (57), the approximation of P for pristine water (I ≤ 10-4

M), the isotherm is (62), thus we get
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XOM(M, H) = XT 

α k2

k1

 M

H2

α k2

k1

 M

H2
 + (1 + 2 k1k2)

. (84)

This isotherm meets (83) when

H = H+ M
M+

          (2-wave, non-retarded)
. (85)

     Thus, the non-retarded wave is determined by the exchange stoi-
chiometry, the adsorption constants do not enter.

     The equation for the other wave -given by equation (81)- involves
only soluble species. Equation (81) states that the sum of the soluble
concentrations is a conserved quantity, i.e. it does not change across
the wave

M + Ht = M- + Ht- . (86)

     It is customary in speciation calculations to approximate Ht in
pristine water by the difference between the proton and the hydroxyl
concentrations, assuming that the concentration of the H2O complex
remains constant:

Ht = H - OH = H - Kw

H , (87)

where Kw = 10-14 (mol/L)2. With (87), equation (86) becomes

M = M- - (H - H-) - Kw (1
H

  - 1
H-

)     (1-wave, retarded)
. (88)

     Figure 8 shows the grid of 1- and 2-waves, with M+ = M- = 10-9

mol/L and H+ = H- = 10-4 mol/L, 10-5 mol/L, ..., 10-12 mol/L. Helf-
ferich  (1992) has called it the "street map" of the system, because the
only way to get from a state (-) to a state (+) is to first follow the 1-
wave until (point (1) where) it meets a 2-wave along which one can
get to state (+) (see example in figure 8).
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pH

log M

+

-
1

Fig. 8: 1- and 2-waves, (85) and (88),  in concentration space. 2-waves are dashed.
Units of M: mol/L. The points (-), (1) and (+) mark the solution of a particular
Riemann problem. Note that the logarithmic plot exaggerates the angle between
the waves at high pH.

     The retardation of the 1-wave is ρ1(M, H), the larger of the two
eigenvalues of R(M, H) (see (31)). It has the simple form

ρ1(c) = 1 +  1
φ

  ∂XOM(c)

∂M
  (1 +  2HM

H2 + Kw

)
(89)

with

∂XOM(c)

∂M
 = XT α PZC (1 + 2 k1PZC) H2

(α PZC M + H2 (1 +  2 k1PZC))
2
. (90)
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     At low ionic strength the surface charge on the oxide is small, and
therefore approximation (57) could be used to calculate a solution of
the transport equations (77) and (78).

    It is interesting to notice the similarity between the oxde system at
low ionic strength and an ion exchange system with constant surface
charge. For a two-component system (N0 = 2) with an exchange
isotherm (41), the analytical solution method gives for the 1- and 2-
waves ( c1 + c2)' = 0 and ξ = vw/φ, respectively, or

c1 + c2 = (c1)- + (c2)-
i.e
c2 = - c1 + (c1)- + (c2)-     (1-wave, retarded), (91)

as compared to (88).

From Cj
* (c1, c2) = Cj

* ((c1)+, (c2)+) follows for the isotherm (41)

c2 = (c2)+ c1

(c1)+
         (2-wave, non-retarded)

(92)

as compared to (85).

     The independence of the shape of those waves (91) and (92) from
the concentrations c- and c+ and the separation factor α12 is peculiar
to the exchange (35) in a system with only 2-components.

Contrary to the shape of the waves, the retardation of the 1-wave, i.e.
the eigenvalue ρ1(c1, c2) of R(c1, c2), depends on the identity of the
exchanging ions. As compared to (89) and (90) it is a simpler func-
tion of the separation factors and concentrations

ρ1 = 1 +  XT

φ
 α12(c1+c2)

 (α12c1 + c2)
2
. (93)

8.2 Exchange Systems with Buffers

     Both waves will be retarded whenever there is a "buffer" in the
system that allows adsorption to break away from the rigid one-to-
one exchange depicted in figure 4 or expressed in (81) as a conse-
quence of (57), or  (91). We have such a buffered situation when
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(1) the two components adsorb according to a Langmuir
isotherm (46) on constant charge surfaces (P = 1), the empty
sites playing the role of the buffer,

(2) we have three species and
(a) one of the species concentrations in solution is constant
(isotherm (46)) or
(b) the sum of the species concentrations in solution is con-
stant (isotherm (48)).

     The initial discontinuity c+ → c- of the Riemann problem develops
into a sequence of two retarded waves, a slow one, the 1-wave, and a
fast one, the 2-wave. In composition space these waves are lines
tangential to a parabola (Helfferich and Klein, 1970; Rhee et al.,
1989), as depicted in figure 9. The proof can be found in appendix 12
A. 4. The equation of the parabola is

c2 = 1 - c1 ± 2 -c1, with cj = 
cj

k. (94)

c 1
_

c
_

2

r
1

r2

Fig. 9: Parabola (94) with waves. r1 and r2 are the right eigenvectors parallel to

the 1- and 2-wave, respectively.

    The value of k depends on the form of the isotherm. In the ex-
change system (case 2b, in which all three concentrations may vary
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under the constraint c1 + c2 + c3 = c (c = constant, including c = 0)),
i.e. for

Cj
*(c) = XT 

α j3 cj

α13 c1 + α23 c2 + c3
     (j = 1, 2, 3 and ci∑

i=1

3

 = c)
(95)

we get

k = 1 - α12

α13 - 1
 c

. (96)

     For a system with surface bridge formation or an exchange system
with constant c3 (in the latter we introduce kj  = α j3/c3), i.e. for

Cj
*(c) = XT 

kj cj

1 + k1 c1 + k2 c2

     (j = 1, 2)
(97)

we get

k = 1
k1

 - 1
k2. (98)

     The parabola lies in the upper left quadrant when k is positive, and
in the lower right quadrant when k is negative. The buffer disappears
when k → 0, which is equivalent to an isotherm (41) with N0 = 2,

Cj
*(c) = XT 

α j2cj

α12c1 + c2
      (j = 1, 2)

. (99)

     For the 2-component system with bridge formation, (97), we get
for the retardations of the 1- and 2-wave

ρ1,2 = 1 + XT

2
 { k1(1+k2(c1+c2))+k2

δ2
  ± k1(1+k2(c1+c2))+k2

δ2

2

- 4k1k2

δ3
}

(100)

with

δ = 1 + k1 c1 + k2 c2 (101)

     When c2 >> k, the 1-waves in the 2-component system with bridge
formation approach asymptotically the 1-waves (91) of the 2-
component exchange system (41). At these elevated concentrations
almost all surface sites (in the system with surface bridges) are oc-
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cupied by either species A1 or A2, and the adsorption process degen-
erates into an exchange between these two species. This explains the
asymptotic slope -1 of the 1-waves in figure. 9.

9 Barrier Against Remobilization of a Contaminant

     From (93) one can see that in a Langmuir or ion exchange system
with two independent components A1 and A2

(1) the slope of the 1-wave approaches -1 as c2-
->> k,

(2) the slope of the 2-wave approaches 0 as c2+<< k,

if k is positive, i.e. component A2 adsorbs more strongly (α12 < 1 or
k1 < k2). Assume that the other component, A1, is a contaminant.

     Figure 10 displays the failure of the adsorption barrier: Initially,
the contaminant inventory is adsorbed on the soil particles (c1+ ≈ 0).
When the concentration of the other component in the feed is raised
above the threshold k, the contaminant is removed from the adsorbing
sites and its inventory is carried between the waves. The contaminant
concentration c11

 between the waves is of the same order of magnitude
as the concentration of the remobilizing solute in the feed (c11 ≈ c2-),
because the slopes of the 1- and 2-waves are approximately -1 and 0,
respectively.
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c-

c+

1-wave

2-wave

k

c2

c1

-k
c1

Fig. 10: Parabola (93) and waves in a system with two components. Isotherm:
Langmuir type (97), k1 = 5.0 M-1, k2 = 12.0 M-1. Component A1: contaminant,

component A2: remobilizing agent.

     Figure 11 shows the spatial variation of the corresponding con-
centration profiles, ci(x,t). The described adsorption barrier (97) will
not fail when the contaminant  is bound more strongly to the  adsorb-
ing surfaces than the competing species, A2, i.e. when α12 > 1 or k1 >
k2 (see figure 12).

Whereas the 1-waves are not changed as compared to the case shown
in figure 10 and 11, the slope of the 2-waves does not approach 0 as
c+  approaches 0. Therefore the concentration of the contaminant
between the waves cannot raise much above the one prior to remobi-
lization.
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t = 0
c , c1 2

0 x

c 2-

c1-

c 2+

c 1+

wave 1 wave 2
t > 0

c , c1 2

0 x

c2-

c 1-

c2+

c1+

c21
c11

Fig. 11: Failure of adsorption barrier. A1 is contaminant, A2 remobilizing agent.

    

c 2

c 1

m

1-wave

2-wave

-k

-

+

Fig. 12: An adsorption barrier that cannot fail: k < 0. Component A1: contami-
nant, component A2: remobilizing agent.
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     The described effect has been applied in various areas to purify
materials from unwanted components: Pfann (1958) has introduced
the zone melting process to remove impurities from semiconductor
materials. A heat wave (instead of a wave of a competing species) is
remobilizing the impurity atoms. A similar process (using steam) has
been proposed by Hunt (1988) to remove gasoline trapped in soils.
Harwell (1992) discussed remobilizing such non aqueous phase liq-
uids with a chlorinated hydrocarbon solvent or surfactant wave.

10 Conclusions

          A single abrupt change of the water composition at the inlet of
a column of a porous medium with a homogeneous concentration
distribution develops with time into a series of centered waves, if hy-
drodynamic dispersion is neglected. Centered waves are thus a class
of solutions of the chromatographic transport equations that can be
considered the basic building blocks of general solutions. There are
as many centered waves as there are chemical components in the
system.

     It is customary and helpful in chromatography to plot the variation
of the concentration vector across a wave in concentration space.
When this is done for a set of waves, a net of curves results which
Helfferich has called the "Street Map of the System". It is character-
istic for the chemical interactions in solution and on the adsorbing
surfaces. Its computation does not exceed the limitations imposed on
an experimental laboratory. It requires similar capacities as equilib-
rium speciation calculations which are now standard tools in such
labs.

     Because of the mentioned chemical non-linearities, thresholds run
through concentration space at which the net of waves changes shape.
Experience we gained on one side of a threshold is irrelevant beyond
it. Once the net of centered waves is known for a set of ther-
modynamic parameters, the influence of parameter variations can be
interpreted in terms of its deformations and the change of the thresh-
old locations.

     This helps to understand the impact of uncertainties in the chemi-
cal interactions more comprehensively than results of standard nu-
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merical models, e.g. of coupled finite-difference chemical-speciation
models. The latter compute waves for initial and boundary conditions
that are discrete, isolated points in concentration space. Since they do
not reveal the general structure of the waves such as the locations of
the thresholds, neither inter- nor extraplolation of numerical results is
justified without prior knowledge of the thresholds.

      The results of chromatographic calculations are thus useful
guides for design and interpretation of numerical computations as
well as chemical experiments assessing the adequacy of the assumed
chemical interactions. When the character of e.g. the chemical barriers
against remobilization has been clarified in feedback between ex-
periment and chromatographic model computations, follow-up nu-
merical calculations can concentrate on site specific critical problems.
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12 Appendices

12 A.1 Relative Influence of Diffusion/Dispersion and First
Order Kinetics in a Single-Component System

     For a system (1) and (2) with only one component adsorbing

∂
∂t

 (φ c(x,t) + C(x,t)) + ∂
∂x

 (vw - D ∂
∂x

) c(x,t)  = 0
(A 1. 1)

∂C(x,t)

∂t
 = C

*(c) - C(x,t)
ε (A 1. 2)

it can be shown (Liu, 1987, see also section 12A. 2) that the solution
of the Riemann problem with c- > c+ is for large t (t -> ∞)



39 12 App.1 Diffusion versus Kinetics

(*) a traveling wave c∞(x, t) for D = 0

c∞(x,t) = c(s) (A 1. 3)

with

s = x - σ t, (A 1. 4)

σ = vw

φR, (A 1. 5)

R = 1 + 1
φ

C*(c+) - C*(c-)
c+ - c- (A 1. 6)

-the latter given by the Rankine-Hugoniot relation (24).

Thus, the concentration jump (4) develops into a steady pro-
file c(s) when we wait long enough.

With (A 1. 3) the time asymptotic transport equation is with
d/ds abreviated as '

d
ds

 [-σ(φ c + C*) + vw c - 2σ2εC*' c'] = 0
. (A 1. 7)

(*) the same traveling wave (A 1. 3) for ε = 0 or C = C*.

With (A 1. 3) the time asymptotic transport equation is with
d/ds abreviated as '

 
d
ds

 [-σ(φ c + C*) + vw c - D c'] = 0
. (A 1. 8)

     The interpretation of the development of a traveling wave is this:
Dispersion or adsorption kinetics tend to produce a smooth transition
between c+ and c-, whereas the nonlinear dependence of the adsorbed
concentration C* on c counteracts dispersion or kinetics and tries to
produce a steep profile. The traveling wave is the stationary com-
promise.
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     It is assumed that also for D ≠ 0 the transport equations (A 1. 1)
and (A 1. 2) have a traveling wave as time asymptotic solution, and
that its width is given by the dispersion process if

2σ2εC*' < D. (A 1. 9)

    Using the definitions (A 1. 5) and (A 1. 6) and the separation of
the dispersion into diffusion and hydrodynamic dispersion

D = D*τ + δ vw

φ (A 1. 10)

where D* is the diffusion coefficient in water, τ the tortuosity (0.3), δ
the dispersivity,

and the approximation

C*' = φ(R - 1) (A 1. 11)

the upper limit of ε after (A 1. 9) can be written as

ε = R2φ
2vw

2 (R - 1)
 D = R2φ

2vw
2 (R - 1)

 (D*τ + δvw

φ
) = 10.5 R2

R-1
 days

(A 1. 12)

The right hand side of (A 1. 12) has been evaluated for φ = τ = 0.3, δ
= 0, D* = 0.16 m2/yr and vw = 0.5 m/yr.

The interpretation of (A 1. 12) is this: If the adsorbed concentration C
reaches 37% of its equilibrium value, i.e. C*/e (e = 2.71), within a
period ε or less, the kinetics of the adsorption process has a negligible
influence -as compared to diffusion/dispersion- on the shape of the
traveling wave.

     Figure A 1. shows more detail of (A 1. 12) by demonstrating how
the upper limit of ε depends on the speed vw of the water, two retar-
dations (R = 5 and 1.1) and various dispersivities δ, the latter being
approximated by L/100.
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Fig. A 1:  Upper limit of relaxation time ε, (A 1. 12),  as a function of speed vw
of water for L = 0, 3, 6 and 9 m. δ = 0.01 L has been used.

     To get an analytical expression for the influence of relaxation rela-
tive to dispersion, let us consider a moderately retarded species (e.g.
R > 5), so that we can neglect the 1 in the denominator of (A 1. 12).
After multiplying both sides of (A 1. 12) with  σ2 ε = (vw/(φR))2 ε
and taking the square root of both sides

σ ε < 1
2

 D
φ (R-1)

 ε  = 1
2

 Dε
. (A 1. 13)



42 12 App.1 Diffusion versus Kinetics

where D = D/(φ(R-1)) approaches the retarded dispersion coefficient,
D/(φR), for large R.

Equation (A 1. 13) compares two lengths calculated in two different
one-component systems:

Left side: Assume  a purely advective system at equilibrium
(equation (1) with C = C* and D = 0). σε is the advective
distance a wave travels during the relaxation time ε (advection
during relaxation).

Right side: Assume a purely dispersive system at equilibrium
(equation (1) with C = C*  and vw = 0). √(Dε) is the width of
the profile  c(x,t = ε) for an initial concentration jump (c(x,0)
= c- for x < 0 and c+ for x ≥ 0).

In this sense relaxation of adsorption can be neglected against dis-
persion if advection during relaxation (σε) is smaller than the width of
the profile √(Dε) divided by √2.

     Evaluated for natural water flow (vw < 0.5 m/yr) through river or
lake sediments in moderate latidudes (A 1. 12) means: Relaxation
times ε < 1 week have a negligible influence on the shape of naturally
produced profiles (see also the very comprehensive analysis of van
der Zee (1990)).

12 A.2 Non-Linear Single-Component Transport:
12 A.2.1 Non-Equilibrium Transport without Diffusion

     The transport equation for a single component without diffusion is
the conservation law (A 2. 1)

∂c

∂x
 + 1

vw
 ∂
∂t

 (φc + C) = 0
, (A 2. 1)

where

∂C

∂t
 = C

*- C
ε (A 2. 2)
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c and C are the species concentrations in the soluble phase and on the
adsorbing soil surfaces, respectively. The soil consists of the soluble
phase (water) and the solid phase (soil particles), the volume fractions
of which are φ and 1 - φ, respectively. vw is the flux of the water. φ and
vw are constants. The adsorbed concentration C(x,t) relaxes to its

equilibrium value C* (c). ε is the corresponding relaxation time due to
adsorption kinetics.

     Liu (1987) presented a solution for (A 2. 1), (A 2. 2) for the Rie-
mann problem :

This system (A 2. 1), (A 2. 2) has the characteristics l1 = 0 and l2 =
vw/φ. The equilibrium characteristic l* , i.e. the one for (A 2. 1)) with

C = C* , is

λ* =  vw

φ
 1

1 + 1
φ

 dC
*(c)

dc

  =  vw

φ
 1

1 + XT

φ
 k

(1+kc)2 . (A 2. 3)

Thus, l*  is a subcharacteristic (l1 <  l* <  l2).

     The system (A 2. 1), (A 2. 2) can be asymptotically approximated
by

∂c

∂x
 + 1

vw
 ∂
∂t

 (φc + C*)  - ( ∂
∂t

 β(c) ∂c

∂t
) = 0

, (A 2. 4)

where

β(c) = 2ε
vw

 dC
*(c)

dc . (A 2. 5)

     Liu shows that a traveling wave

c(x,t) = c(x - σt) = c(s) (A 2. 6)

is a solution of (A 2. 1), (A 2. 2) for the Riemann problem (with c+
and c- being the concentrations right and left of the discontinuity, re-
spectively). σ is given by the Rankine-Hugoniot condition (24) for the
equilibrium system (C = C* )
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σ = vw

φ
 ∆c

∆(c + 1
φ

 C*)
 = vw

φ
 1

1 + 1
φ

 ∆C*

∆c

 = vw

φ
 1
R

, (A 2. 7)

with ∆c = c+ - c-, ∆(C* ) = (C* (c+)) - (C* (c-)).

     Using (A 2. 6) in (A 2. 4), we can integrate the transport equation
to get the profile s(c) of the traveling wave. With the abbreviations

c = c - c+

∆c
,  C* = C

* - C+
*

∆C*

the result is (for proof see paragraph IV below)

ds
dc

 
c+

c

dc = s(c) - s(c+) = 2σ2ε
vw(1 - 1

R
)
 C*'dc

c - C*
c+

c

. (A 2. 8)

12 A.2.2 Equilibrium Transport with Diffusion

        When diffusion is included, the transport equation for a single
component in local equilibrium with the soil surfaces is

∂
∂t

 (φc + C*) + ∂
∂x

 (vw - D ∂
∂x

) c = 0
. (A 2. 9)

     Limiting ourselves again to the asymptotic solution, the traveling
wave (A 2. 6), (A 2. 9) can be integrated resulting in the following
equation for the profile

s(c) - s(c+) = D

vw(1 - 1
R

)
 dc

c - C*
c+

c

, (A 2. 10)

     For the Langmuir isotherm, Lake and Helfferich (1978) and van
der Zee (1988) derived an analytical expression for the integral in (A
2. 10). Later (1990), van der Zee derived an analytical expression for
the case of combined non-equilibrium and diffusion/dispersion.
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12 A.2.3 Linear Transport of a Single Component

     If the adsorption isotherm is linear

C*(c) = φ (R - 1) c

the solution of the transport equation (A 2. 1)) for the Riemann
problem is (Bear, 1979)

c[x,t]
c0

 =  1
2
(erfc

x - v0t
R

2 Dt
R

 + e2v0x/D erfc
x + v0t

R

2 Dt
R

)

, (A 2. 11)

where

v0 = vw

φ .

12 A.2.4 Proofs of (A 2. 8) and (A 2. 10):
Integration of Transport Equation Assuming a Traveling
Wave

     Integration of the transport equation (A 2. 9) will be shown first.
For the traveling wave solution (A 2. 6), (A 2. 9) becomes an ordinary
differential equation

d
ds

 [-σ(φc + C*) + vwc - Dc'] = 0
, (A 2. 12)

from which c' = dc/ds can be calculated.

c' = 1
vw

 d
ds

 [σ(φc + C*) + Dc'] = 0
. (A 2. 13)

Since c'+ = 0, the integral of (A 2. 13) from c+ to c

c - c+ = 1
vw

 {σ[φ(c - c+) + C*- C+
* ] + D(c' - c'+)}

(A 2. 14)

can be simplified and solved for c'
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c' = 1
D

 {(c -c+)(vw - σφ) - σ(C*- C+
* )}=

       = vw - σφ
D

 {(c -c+) - σ
vw - σφ

(C*- C+
* )}

. (A 2. 15)

Replacing (see (A 2. 7))

vw - σφ = vw(1 - 1
R

) and σ
vw - σφ

 = ∆c

∆C* ,

(A 2. 15) appears as

c'     = 
vw(1 - 1

R
)

D
 {(c -c+) - ∆c

∆C*
(C*- C+

* )} = 

= ∆c 
vw(1 - 1

R
)

D
 {c -c+

∆c
 - C

*- C+
*

∆C*
 }

. (A 2. 16)

After introducing

c = c - c+

∆c
,  C* = C

* - C+
*

∆C*

(A 2. 16) becomes

dc
ds

 = ∆c 
vw(1 - 1

R
)

D
 {c- C*}

(A 2. 17)

The reciprocal of dc/ds is integrated from c+ to c

ds
dc

 
c+

c

dc = s(c) - s(c+) = D

vw(1 - 1
R

)
 dc

c - C*
c+

c

. (A 2. 18)

     For the case of non equilibrium transport with relaxation the
asymptotic profile can be calculated similarly, since -after introducing
the traveling wave solution into (A 2. 4)- the resulting ordinary dif-
ferential equation is similar to (A 2. 12):
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d
ds

 [-σ(φ c + C*) + vw c - 2σ2εC*' c'] = 0
. (A 2. 19)

Replacing in (A 2. 12) D with 2σ2εC*' gives the profile for relax-
ation. (Note that C*'  depends on c and has to placed under the inte-
gral.)

ds
dc

 
c+

c

dc = s(c) - s(c+) = 2σ2ε
vw(1 - 1

R
)
 C*'dc

c - C*
c+

c

(A 2. 20)

12 A.2.5 Example: Langmuir Adsorption

     Silver adsorbs following a Langmuir type isotherm

C*(c)  = XT  k c
1 + k c. (A 2. 21)

     The Langmuir constant k is composed of the exchange constant a
for Ag/H exchange and the surface hydrolysis constant k2, both of
which are defined as adsorption mass action constants.  Referring to
the adsorbing surface site on an oxide as XO, the site occupied by
silver is XOAg and the ones occupied by one or two protons are
XOH and XOH2, respectively (Dzombak and Morel, 1990). The ad-
sorption reactions can be described by the following mas action laws,
where the symbols XOAg, XOH2, XOH and XO are used for the
corresponding adsorbed concentrations, e.g. XOAg = C*

XOAg = α XOH M
H , (A 2. 22)

XOH2 = k1 P XOH H, (A 2. 23)

XO = k2

P
 XOH

H+ . (A 2. 24)

P is an electrostatic correction factor (Dzombak and Morel, 1990)

P = exp (- Fψ
RT

),

where ψ (unit: Volt = Joule/Coulomb) is the electrostatic potential at
the adsorbing surface, F (96485 Coulomb/mol) is the Faraday con-
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stant, R (8.31 Joule/(mol Kelvin)) is the gas constant and T (Kelvin)
is the absolute temperature.

     The electrostatic correction factor is generally a function of the
composition of the aqueous solution. In dilute systems , i.e. at ionic
strengths I = (1/2) ∑ zi2 ci ≤ 10^-4 M, where zi and ci are the charge
and concentration of component i in solution, P can be approximated
by

P = 

k2

k1

H . (A 2. 25)

It follows from (A 2. 25) that

XOH2 = XO = k1 k2 XOH. (A 2. 26)

Using XT, the concentration of adsorption sites, and (15') in (A 2. 22)
- (14")

XT = XOH2 + XOH + XO + XOM = XOH (1 + 2 k1 k2 + α M
H

 )
, (A 2. 27)

we can construct the isotherm for silver,

XOM(M, H) = XT α M

α M + H (1 + 2 k1k2), (A 2. 28)

which can be brought into the form (A 2. 21) when the proton con-
centration is held constant by buffers:

XOM(M, H) = XT 

α
H (1 + 2 k1k2)

 M

1 + α
H (1 + 2 k1k2)

 M
. (A 2. 29)

Thus,

k = α
H (1 + 2 k1k2). (A 2. 30)

We get a similar expression for k for regions in {M, H} space in
which P is constant, e.g.
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P = 1

and either XOH2 or XOH2 + XOH being negligible. In the first case,
i.e. when

XOH2 << XOH.

the isotherm is

XOM(M, H)  =  XT α M
α M + H + k2

  =  

α
H + k2

 M

α
H + k2

 M + 1
, (A 2. 31)

and, thus,

k = α
H + k2. (A 2. 32)

In the second case, i.e. at H << k2, the isotherm is

XOM(M, H)  =  XT α M
α M + k2

  =  

α
k2

 M

α
k2

 M + 1
, (A 2. 33)

and the Langmuir factor is

k = α
k2. (A 2. 34)

At H = k2 all expressions for k, (A 2. 30), (A 2. 32) and (A 2. 34), are
similar. For this example, expression (A 2. 34) is chosen.
With the data from Dzombak and Morel (1990)

α = 10-1.72 (A 2. 35)

k2 = 10-8.9 mole/liter (A 2. 36)

we get

k = α/k2 = 1.8 107 liter/mole. (A 2. 37)

The profiles in figure 1 were calculated based on the following data
(A 2. 38):
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XT = 5 10-3 HFO, concentration of sites adsorbing Ag, (Dzom-
bak and Morel, 1990).

HFO = 10-3 mol hydrous ferric oxides (Fe2O3) per liter of soil
= 0.09 g hydrous ferric oxides per liter of soil.

c- = 5.0 10-4 mg Ag per liter of feed water.

c+ = 0, Ag concentration in undisturbed soil column.

 
Fig. 1: Profiles for linear and non-linear adsorption, calculated for the same retardation
(R = 2.7, according to (A 2. 7)). Traveling wave -the curve without tail- was calculated
using (A 2. 10). Profiles for linear adsorption isotherm calculated for times t = 0.1,
0.5, 1, 2 yr, using (A 2. 11). Element and environment: silver in hydrous ferric oxide
coated inert sediment matrix.  Abscissa: distance (units: m), ordinate: concentration
(mol/Liter). Adsorption data from Dzombak and Morel (1990).

φ = 0.3, fraction of soil filled with liquid phase (water).

v0 = vw/φ = 0.5 m/yr, speed of liquid phase (water).

     The traveling wave was calculated by integrating (A 2. 10) and
plotting c vs. s. The profiles c(x,t) for the linear isotherm were calcu-
lated at t = 0.1, 0.5, 1 and 2 years, using (A 2. 11).

12 A.3 Langmuir and Exchange Type Isotherms:
Shocks and Rarefaction Waves are Lines and Coincide
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     The first part of this proof concerns rarefaction waves, i.e.
solutions of the set of differential equations (7). Using cj and C* j to
denote soluble and adsorbed concentrations as functions of ξ, this
equation reads

(vw

φ
 - ξ) 

dcj

dξ
 - ξ

φ
 
dCj

*

dξ
 = 0     (j = 1, 2, ..., N0)

. (A 3. 1)

Dividing by dcj /dξ we get

(vw

φ
 - ξ) - ξ

φ
 
dCj

*

dcj

 = 0     (j = 1, 2, ..., N0)
.

Because vw/φ - ξ is the same for all j, this equation can be written as

dC1
*

dc1

 = dC2
*

dc2

 = ..., dCN0
*

dcN0 , (A 3. 2)

which is called differential coherence condition (Helfferich and Klein,
1970).

     Because the change ck - ck-1  of the N0 components of the concen-
tration vector across a k-wave is restricted by N0-1 conditions (A 3.
2), the concentration vector ck

 can be expressed as functions of one
parameter if ck-1 is given. Here we choose δ which is a measure of the
sum of all adsorbed concentrations, the surface coverage

 1
XT

 Cj
*∑

j=1

N0

 = 1 - 1
δ

  = surface coverage
. (A 3. 3)

Correspondingly, the Langmuir isotherm reads now

Ck
*(δ) = XT kk ck(δ)

δ , (A 3. 4)

     It is this structure of the isotherm that causes the waves to be lin-
ear, as will be shown now (A 3. 5 - A 3. 13).

     The N0 derivatives dC*j/dcj in the direction across the k-wave in
composition space are
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dCj
*

dcj

  = 
Cj

*'

cj'
  = 

XT kj

δ2
 (δ - 

cj

cj'
 )
. (A 3. 5)

where the prime denotes the derivative with respect to δ.  Using (A 3.
5) in (A 3. 2) gives us

 k1 (δ - c1

c1'
 ) = k2 (δ - c2

c2'
 ) = ... = kN0 (δ - cN0

cN0'
 )
. (A 3. 6)

Differentiating each term in the equality again with respect to δ gives
for the j-term

d
dδ

 kj (δ - 
cj

cj'
 ) = kj (1 - 1 + cj 

cj''

cj'
2
 ) =   

kjcj''

1
cj

 cj'
2

.

With that in mind (A 3. 6) can be rearranged

k1c1''
1
c1

 c1'
2
  = k2c2''

1
c2

 c2'
2
 = ... = kN0cN0''

1
cN0

 cN0'
2

. (A 3. 7)

     In equalities like a1/b1 = a2/b2 = a3/b3 the following equation holds:
ai/bi = Σ ak/Σ bk, where the sum extends over k = 1 to 3 and i is 1, 2 or
3. This is applied to (A 3. 7):

k1c1''
1
c1

 c1'
2
  = k2c2''

1
c2

 c2'
2
 = ... = kN0cN0''

1
cN0

 cN0'
2
 = 

kjcj''∑
j=1

N0

1
cj

 cj'
2∑

j=1

N0

. (A 3. 8)

From the definition of δ we know that

 kjcj''∑
j=1

N0

 = 0
. (A 3. 9)

Therefore, any solution of (A 3. 8) must meet the following condition

 cj'' = 0 (A 3. 10)
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or

cj'
2

cj
∑
j=1

N0

 = 0
. (A 3. 11)

     Integration of (A 3. 10) tells us that in each k-wave all components
cj of the concentration vector c are linear functions of the common
parameter δ:

cj'' = 0
i.e.
cj' = aj, or c' = a (A 3. 12)

with a = {a1, a2, ..., aNo}. Because -for any wave, e.g. the k-wave- the
aj are integration constants, a is independent of c, i.e. independent
from the location on the k-wave.  Consequently the k-wave is a
(straight) line in composition space.

     Comparing (A 3. 12) with (33) one can see that a is the right
eigenvector rk corresponding to the k-wave. Thus, the vector de-
scribing the change of c across the k-wave

c' = rk,

is independent of c.

     Integration of (A 3. 12) will give us the k-wave. With δk-1-δk de-
noting the change of the parameter δ across the k-wave and with the
nomenclature introduced in figure 1, we get the following expression
for the solution of the Riemann problem

ck = ck-1 + rk (δk-1 - δk),     with rk being independent of c. (A 3. 13)

     (A 3. 11) gives another condition for the slopes cj' when cj" = 0. In
a 2-component-system (A 3. 11) gives the equation of a curve c2(c1)
having as tangents the lines which meet (A 3. 13) (see appendix 12A
4).

     It will now be shown that k-shocks coincide with k-rarefaction
waves (A 3. 13). The concentration changes across a k-shock by a
finite amount rather than by differential amounts as across a rarefac-
tion wave. Accordingly, the mass conservation law involves differ-
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ences rather than differentials. Otherwise the conservation laws are
the same as for rarefaction waves (i.e. (3))

∆
∆ t

 {φci(x,t) + Ci
*(c1,c2, ..., cN0)}  +  vw ∆

∆x
 ci(x,t) = 0     (i = 1, 2, ..., N0)

(A 3. 14)

or after dividing by φ and multiplying with ∆x

∆(ci + 1
φ

 Ci
*) ∆x

∆ t
 - vw

φ
 ∆ci = 0

.

Solving for ∆x/∆t = σk, the speed of the k-shock,

σk = vw

φ
 ∆ci

∆(ci + 1
φ

 Ci
*)

 =  

vw

φ

1 + 1
φ

 ∆Ci
*

∆ci

,      (i = 1, 2, ..., N0)

. (A 3. 15)

(A 3. 15) is the so-called "Rankine-Hugoniot relation". It has N0
physical solutions (Lax, 1973).

     The speed of the k-shock is by a factor Rk smaller than the speed
of the water. Rk is called "retardation of the k-shock".

Rk = 1 + 1
φ

 ∆kCi
*

∆kci (A 3. 16)

The Rankine-Hugoniot relation (integral coherence condition) can be
written in a form analogous to (A 3. 2):

∆C1
*

∆c1

 = ∆C2
*

∆c2

 = ..., = ∆CN0
*

∆cN0

     for each k-shock (k = 1, 2, ..., N0)
. (A 3. 17)

     As was shown in (A 3. 5 - 13), the relationship (A 3. 2) is satisfied
when the concentrations cj  are linear functions of a parameter δ.
Writing cj(δ) as

cj = aj δ + bj, (A 3. 18)

we get for the differential coherence condition
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dCj
*

dcj

 = 

dCj
*

dδ
dcj

dδ

 = -XTkj 
bj

ajδ2

(A 3. 19)

and for the integral coherence condition

∆Cj
*

∆cj

 = -XTkj 
bj

aj δ(δ + ∆), (A 3. 20)

where δ and δ+∆ are the values of the parameter left and right of the
discontinuity.

     Replacing ∆C* j/∆cj in the integral coherence condition with the
value given in (A 3. 20) results in

- XTk1 b1

a1δ (δ + ∆)
 = - XTk2 b2

a2δ (δ + ∆)
 = ... = - XTkN0 

bN0

aN0δ (δ + ∆) (A 3. 21)

The differential coherence condition with dC*j/dcj replaced with (A 3.
19) is

- XTk1 b1

a1δ2
 = - XTk2 b2

a2δ2
 = ... = - XTkN0 

bN0

aN0δ
2
. (A 3. 22)

After having canceled common factors in (A 3. 21) and in (A 3. 22)
we get the same condition for the ai, bi and ki:

k1 b1
a1

 = k2 b2
a2

 = ... = kN0 
bN0

aN0. (A 3. 23)

Thus the same line (A 3. 18) satisfies the differential as well as the
integral coherence condition. In other words: k-shocks coincide with
k-rarefaction waves.

12 A.4 Waves in a Two-Component System with
Langmuir Isotherm

     Using cj and C* j to denote soluble and adsorbed concentrations
as functions of ξ, the equilibrium transport equation (3) reads
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(vw

φ
 - ξ) 

dcj

dξ
 - ξ

φ
 
dCj

*

dξ
 = 0     (j = 1, 2)

. (A 4. 1)

The corresponding differential coherence condition (9d) is

dC2
*

dc2

  - dC1
*

dc1

 = 0
(A 4. 2)

Writing the directional derivatives in (A 4. 2) in terms of partial
derivatives in composition space

dCj
*

dcj

 = 
∂Cj

*

∂c1

 + 
∂Cj

*

∂c2

 dc2

dc1

and multiplying with the derivative dc1/dc2  gives us an expression
equivalent to (10c)

∂C2
*

∂c1
 (dc1

dc2
)2 - (

∂C1
*

∂c1
 - 

∂C2
*

∂c2
) dc1

dc2
 - 

∂C1
*

∂c2
 = 0

. (A 4. 3)

At this point the specific form of the isotherm is introduced:

Cj
* = 

Γjcj

1 + B1c1 + B2c2

 = 
Γjcj

δ , (A 4. 4)

i.e. for the 2-component Langmuir isotherm

Γj = XT kj, Bj = kj (A 4. 5)

For ion exchange in a 3-species system with constant total concentra-
tion c = c1 + c2 + c3

Cj
*(c) = XT 

α j3

c
 cj

α13-1
c

 c1 + α23-1
 c

 c2 + 1

we have

Γj = XT 
α j3

c
, Bj = 

α j3 - 1
c . (A 4. 6)
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The partial derivative of the isotherm is then

∂Ci
*

∂cj

 = Γi

δ
 (

Bjci

-δ
 + δij)

, (A 4. 7)

where the Kronecker symbol δi j  = 0 for i≠ j and δi i = 1.

     With (A 4. 7) the equation (A 4. 3) assumes the following form

Γ2B1c2(dc1

dc2

)2 + (Γ1B2c2 + Γ1 - Γ2B1c1 - Γ2)dc1

dc2

  - Γ1B2 c1 = 0
. (A 4. 8)

Dividing through by G2B1 (note that G2B1 = G1B2) and abbreviating

k = 1
B1

 ( 1 - Γ1

Γ2
 ); cj  = 

cj

k (A 4. 9)

the differential equation (A 4. 8) for c1(c2) can be written as

c2(dc1

dc2

)2 - (1 + c1 - c2)dc1

dc2

 - c1 = 0
. (A 4. 10)

Glueckauf (1949) solved this equation by differentiating once more
with respect to c2

d2c1

dc2
2
 {2c2

dc1

dc2

 - (1 + c1 - c2)} = 0
. (A 4. 11)

This equation is satisfied by a set of lines

d2c2

dc1
2
 = 0

,

i.e.

c2(c1) = a c1 + b (A 4. 12)

that are tangential to the solution of the equation

2 c2
dc1

dc2

  = 1 + c1 - c2
. (A 4. 13)
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Using (A 4. 13) in (A 4. 10) gives

(1+c1 - c2)
2 + 4c1c2 = 0,

which can be solved for c2

c2 = 1 - c1 ± 2 -c1. (A 4. 14)

(A 4. 14) is a parabola that touches the axes at c2 = 1 and c1 = -1.

12 A.5 Solution of the Riemann Problem with Riemann Invari-
ants

     The solution of the Riemann problem makes use of the fact that
the waves are (straight) lines in composition space, or -in other
words- that the k-wave connecting constant states ck-1and ck adjacent
to it is a line parallel to the right eigenvector rk of the Jacobi matrix of
the isotherms, Kd (see (33) and (A 3. 12), (A 3. 13)). With ~
denoting proportionality

ck - ck-1 ~ rk (A 5. 1)

with

Kd(c) rk(c) = kdk(c) rk(c) (A 5. 2)
and
rk(c) being constant across the k-wave. (A 5. 3)

The Jacobian Kd(c) has been defined in (33).

In addition to (A 5. 1) - (A 5. 3) the solution uses only the biorthog-
onality of the left and right eigenvectors

rk(c) l j(c) = 0,     (j ≠ k), (A 5. 4)
where

lk(c) Kd(c) = kdk(c) lk(c). (A 5. 5)

     We will need the following theorem in this appendix:

Theorem:
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     The left eigenvector corresponding to the eigenvalue kdj(ck) can
be calculated from the Jacobians Kd(c-) and Kd(c+) as follows

l j(ck) = {  
l j

+,     (j ≤ k)

l j
-,     (j > k). (A 5. 6)

with l j- = l j(c-) and l j+ = l j(c+).

Proof:

     Because rk is constant across the k-wave,

rk(ck-1) = rk(ck) (A 5. 7)

so are (or can be chosen) the left eigenvectors that are orthogonal to
rk

l j(ck-1) = l j(ck),     (j ≠ k). (A 5. 8)

Then the left eigenvectors in the fan of constant states c-, c1, c2, ..., c+
(see figure 1) are:

l1(c-) = l1
-, l2(c-) = l2

-, ..., lN0(c-) = lN0
-

l1(c1) = l1
+, l2(c1) = l2

-, ..., lN0(c1) = lN0
-

l1(c2) = l1
+, l2(c2) = l2

+, l3(c2) = l3
-, ..., lN0(c2) = lN0

-

....

l1(c+) = l1
+, ..., lN0-1(c+) = lN0-1

+ , lN0(c+) = lN0
+

. (A 5. 9)

This can be written in the compact form (A 5. 6), q.e.d.

     Let L(ck) be the matrix the rows of which are the left eigenvectors
corresponding to the eigenvalues of the Jacobian Kd(ck), kd1(ck), ...,
kdNo(ck)

L(ck) = 

l1(ck)

.....

lN0(ck) .
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The j-th row in this matrix is either l j+ or l j- depending on ck (see (A
5. 9)). So, L(ck) is a known matrix.

     The k-Riemann invariant is defined as the scalar function of the
concentration vector that changes only across the k-wave and remains
unchanged across all other waves.
Definition : Let ∇c denote the gradient in concentration space, then
the scalar function wj(c) is the j-Riemann invariant if

rk∇cwj = 0      (j = 1, 2, ..., k-1, k+1, ..., N0). (A 5. 10)

     Thus, both the left eigenvector lk and the k-Riemann invariant have
the property that they change only across the k-wave. So, for the
Riemann invariants there exists a relationship similar to (A 5. 6)

wj(ck) = {  
wj

+,     (j ≤ k)

wj
-,     (j > k) (A 5. 11)

with wj+ = wj(c+) and wj- = wj(c-). The j-th component of the vector

w(ck) = 

w1(ck)

...

wN0(ck)

is thus either wj+ or wj-, depending on at what ck it is evaluated. Like
the matrix L(ck), the vector w(ck) is known.

     Defintion (A 5. 10) does not define a unique Riemann invariant.
The following theorem gives us a convenient choice.

Theorem: The scalar product of the left eigenvector and the concen-
tration vector c evaluated at the k-th constant state

wj(ck) = l j(ck) ck ,      (j, k = 1, 2, ..., N0, j ≠ k) (A 5. 12)

is a k-Riemann invariant.

Proof:

rk∇cwj = rk (∇cl j c + l j ∇cc) = rk ∇cl j c + rk l j ,      (j ≠ k). (A 5. 13)
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Because of (A 5. 8) rk∇cl j in the first term of (A 5. 13), the derivative
of l j in direction of rk, is zero:

rk∇cl j = 0 ,     (j ≠ k). (A 5. 14)

By (A 5. 4) the last term in (A 5. 13) is zero. Thus,

rk∇cwj = 0      (j ≠ k),

which is the definition of the k- Riemann invariant, q.e.d.

The solution of the Riemann problem is now straighforward. Equa-
tion (A 5. 12) can be written in matrix form

w(ck) = L(ck) ck, (A 5. 15)

where w(ck) and L(ck) are known for all ck. Vector ck is the un-
known. Inverting (A 5. 15)

 L
-1(ck) w(ck) =  ck (A 5. 16)

gives the solution of the Riemann problem.

13 Notation

First parentheses give units. (-) means dimensionless. Last parenthe-
ses give location where symbol is defined or first used.

α index specifying site type, (64).

α iN constant for Aj  - AN exchange, (-), (37).

c vector of soluble concentration {M, Ht}, (6).

cj(x, t) soluble concentration of component Aj , (mol per
Liter of liquid), (1). Index j is omitted in 1-
component system, (A 1. 1).
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ck vector of soluble concentrations in constant state
between k- and (k+1)-wave, (figure 1), (A 5. 1).

c∞(x, t) time asymptotic soluble concentration profile,
(mol per Liter of liquid), (A 1. 3).

c+ soluble concentration vector right of conentra-
tion jump at t = 0, (mol per Liter of liquid), (4).
Scalar c+ is used for the 1-component system (A
1. 6).

c- soluble concentration vector left of conentration
jump at t = 0, (mol per Liter of liquid), (4).
Scalar c- is used for the 1-component system (A
1. 6).

composition
space space the axes of which are the concentrations

M and H (Figure 3).

Cj(x, t) concentration of component Aj  on the surface,
(mol per Liter of system volume), (2). Index j is
omitted in 1-component system, (A 1. 1).

Cj*(c) equilibrium concentration of component Aj  on
the surface, (mol per Liter of system volume),
(2), except in eqs. (37) - (99), where Cj*(c)
means the concentration of a particular surface
species. Concentration of component Aj  on sur-
face is sum of the concentrations of the surface
species containing Aj . Index j is omitted in 1-
component system, (A 1. 2).

D lumped hydrodynamic dispersion/molecular dif-
fusion coefficient, (m2/yr), (1).

D* coefficient of molecular diffusion in water (0.16
m2/yr), (A 1. 10).

δ dispersivity, (m), δ ≈ L/100, (A 1. 10).

δα(c) measure of sum of concentrations adsorbed on
site type α, (-), (64). α is omitted if there is only
one site type, (101), (A 3. 3).
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∇c (∂/∂c1, ∂/∂c2, ..., ∂/∂cNo) = grad, (A 5. 10).

ε j relaxation time for component Aj , (yr), (2). It is
the time during which 37% of the equilibrium
adsorbed concentration is reached. Index j is
omitted in 1-component system, (A 1. 2).

h(ξ) vector of soluble concentrations hj(ξ), (5) and
(8).

hj(ξ) component j of h(ξ), hj(ξ) is concentration cj(x,
t) of Aj  in soluble phase as a function of the
speed ξ = x/t of the concentration, (mol per Liter
of liquid), (5).

H(ξ) vector of adsorbed concentrations Hj(ξ), (7) and
(8).

H(M, H) adsorbed proton concentration, (mol per Liter of
system volume), (73).

Hj(ξ) component j of H(ξ), Hj(ξ) is adsorbed concen-
tration C*j(x,t) of component Aj  as a function of
the speed ξ = x/t of the concentration, (mol per
Liter of system volume), (7) and (8).

Ht(ξ) total proton concentration in solution as a func-
tion of the speed ξ = x/t, (mol per Liter of liq-
uid), (87).

H+ proton activity in pre-equilibrant (pore water be-
fore arrival of abrupt concentration change, see
(4)). H+ = H(x ≥ 0, t = 0), (mol per Liter of
liquid), (85).

H- proton activity in feed (see (4)), H- = H(x < 0, t
= 0), (mol per Liter of liquid), (88).

Ht- Ht(x < 0, t = 0), (86), (mol per Liter of liquid).

HFO concentration of hydrous ferric oxide, Fe2O3,
(mol per liter of system volume), (A 2. 38).

j index specifying chemical component Aj , (-),
(1).
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I ionic strength, (mol/L), paragraph after (56).

I identity matrix, (29).

k index specifying wave, the slowest wave has k =
1, (figure 1, (13).

k threshold concentration of remobilizing compo-
nent for accumulation of contaminant, (mol per
Liter of liquid), (96) and (98).

k 1-component Langmuir adsorption constant,
(mol/L)-1, (A 2. 21).

k1 equilibrium constant for formation of XOH2
surface complex from XOH and H, (L/mol), (49).

k2 equilibrium constant for formation of XO sur-
face complex from XOH and H, (mol/L), (50).

Kd(c) Jacobi matrix of isotherms evaluated at location
c in composition space, (-), (29).

Kw water dissociation constant, (10-14mol2/L2),
(87).

lk(c) left eigenvector of R(c) corresponding to eigen-
value ρk(c), (68).

L length of column of porous medium, (m),
(paragraph after (1) and figure A 1).

L(c) matrix of left eigenvectors lk(c), (69).

M(ξ) soluble concentration of metal, (mol per Liter of
liquid), (77).

M(M, H) adsorbed metal concentration, (mol per Liter of
system volume), (74).

M+ M(x ≥ 0, t = 0), (83).

M - M(x < 0, t = 0), (86).
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N0 number of chemical components, (-), (1).

P electrostatic correction factor, (-), (42) and (57).

PZC point of zero charge on hydrous ferric oxide in
pristine water, i.e. at I ≤ 0.0001 mol/L, (57).

φ porosity of medium, (-), (1).

r(h) right eigenvector of R evaluated at c = h, (33).

rk(c) right eigenvector of R(c) corresponding to
eigenvalue ρk(c), (33).

R(c) retardation matrix evaluated at location c in con-
centration space, (30). The matrix degenerates to
the retardation of the traveling wave, R(c), in the
1-component system, (A 1. 6).

Rk(c) retardation of k-rarefaction wave, (-), (23) and k-
shock, (24). Rk of k-rarefaction wave is equal to
the kth eigenvalue ρk of r, but Rk of k-shock is
kth root of Rankine-Hugoniot relation (24) or
(26).

ρ(c) eigenvalue of R(c), also called "retardation", (-),
(32).

ρk(c) retardation of k-rarefaction wave, (-), (34).

s x - σ t, (m), (A 1. 4).

σ speed of traveling wave, (m/yr), (A 1. 5).

σk speed of k-shock, (m/yr), (24).

t time variable, (yr), (1).

τ tortuosity, (-), (A 1. 10).

vw flux of water, (m/yr), (1).

v0 speed of water, (m/yr), (A 2. 38).
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wj(ck) k-Riemann invariant evaluated at ck, (-), (65) and
(67).

w(ck) vector of N0 Riemann invariants evaluated at ck,
(-), (70).

x spatial variable (m), (1).

XT
α concentration of adsorption sites of type α, (mol

per Liter of system volume), (64). Index α is
omitted when there is only one site type, (39).

XO concentration of empty sites, (mol per Liter of
system), (50).

XOH concentration of sites covered with one proton,
(mol per Liter of system), (49).

XOH2 concentration of sites covered with two protons,
(mol per Liter of system), (49).

XOHM concentration of sites covered with M via a
proton bridge, (mol per Liter of system), (44)
and (59).

XOM concentration of sites covered with metal, (mol
per Liter of system), (51).

ξ speed of concentration c, (m/yr), (5).

ξk speed  of k-rarefaction wave, (m/yr), (13).
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