
10 API Security Vulnerabilities You
Need To Be Aware Of (Along with
REST API Overview)

Santosh Shinde · Follow

Published in JavaScript in Plain English · 11 min read · May 15, 2021

85 1

REST API overview & API Security Vulnerabilities

What is an API?

An API (or Application Programming Interface) provides a method of
interaction between two systems.

What is a RESTful API?

REST stands for REpresentational State Transfer, first defined in 2000 by
computer scientist Dr. Roy Fielding.

REST is a set of architectural constraints, not a protocol or a standard. It is an
architecture style for designing loosely coupled applications over HTTP, that
is often used in the development of web services.

REST does not enforce any rule regarding how it should be implemented at a
lower level, it just puts high-level design guidelines and leaves you to think of
your own implementation.

REST Design Principles or Architectural Constraints

1. Client-Server

2. Stateless

3. Cache

4. Uniform Interface

5. Layered System

6. Code-On-Demand (optional)

Client-Server

The principle behind this constraint is the separation of concern as the user
interface is totally segregated from concerns regarding data storage.

Essentially it means client and server applications evolve without
dependency on each other.

Client-Server

Stateless

In REST applications, each request must contain all of the information
necessary to be understood by the server, rather than be dependent on the
server remembering prior requests.

Storing the session state on the server violates the stateless constraint of the
REST architecture. So the session state must be handled entirely by the
client.

This constraint induces the properties of visibility, reliability, and scalability

Visibility — Every request contains all context necessary to understand it.
Therefore, looking at a single request is sufficient to visualize the
interaction.

Reliability — Since a request stands on its own, failure of one request
does not influence others.

Scalability — The server does not have to remember the application state,
enabling it to serve more requests in a shorter amount of time.

Stateless

Cache

Cache constraints require that the data within a response to a request be
implicitly or explicitly labeled as cacheable or non-cacheable. If a response
is cacheable, then a client cache is given the right to reuse that response data
for later, equivalent requests.

Caching is the ability to store copies of frequently accessed data in several
places along the request-response path.

We can use Expires and Cache-Control HTTP response headers to control
caching behavior

cache

Uniform Interface

The uniform interface constraint is fundamental to the design of any REST
service. The uniform interface simplifies and decouples the architecture,
which enables each part to evolve independently.

The four guiding principles of this interface are:

Identification of resources — You use the URI (IRI) standard to identify a
resource. In this case, a resource is a web document.

Manipulation of resources through these representations — You use the
HTTP standard to describe communication. So for example GET means
that you want to retrieve data about the URI-identified resource. You can
describe an operation with an HTTP method and a URI.

Self-descriptive messages — You use standard MIME types and (standard)
RDF vocabs to make messages self-descriptive. So the client can find the
data by checking the semantics, and it doesn’t have to know the
application-specific data structure the service uses.

Hypermedia as the engine of application state — You use hyperlinks and
possibly URI templates to decouple the client from the application-
specific URI structure. You can annotate these hyperlinks with semantics
e.g. IANA link relations, so the client will understand what they mean.

Uniform Interface

Layered System

In order to improve behavior for Internet-scale requirements layer system
constraints come into the picture.

The layered system style allows an architecture to be composed of
hierarchical layers by constraining component behavior such that each
component cannot “see” beyond the immediate layer with which they are
interacting.

REST allows you to use a layered system architecture where you deploy the
APIs on server 1, and store data on server 2 and authenticate requests in
Server 3.

Layered System

Code-On-Demand

REST allows client functionality to be extended by downloading and
executing code in the form of applets or scripts.

This simplifies clients by reducing the number of features required to be
pre-implemented. Allowing features to be downloaded after deployment
improves system extensibility.

However, it also reduces visibility and thus is only an optional constraint
within REST.

Code-On-Demand

API Security Vulnerabilities (OWASPS-Top-10)

1. Broken Object Level Authorization

APIs tend to expose endpoints that handle object identifiers, creating a wide
attack surface Level Access Control issue.

The lack of proper authorization checks allows attackers to access the
specified resource.

Broken Object Level Authorization

Use Cases

1.Genuine request from an authenticated user to get the user information

Case 1 - Genuine request from an authenticated user

2. User tries to access the resources of another user by guessing the right
parameter

case 2 — guess right parameter

3. User tries to access resources of another user by guessing the wrong
parameter

Case 3 — guess wrong parameters

Broken Object Level Authorization can only be tested manually. You can use the
same tools with which you usually test APIs like Postman, Fiddler, ReadyAPI.

2. Broken User Authentication

Broken user authentication flaws happen mainly due to loopholes in session
management and credential management.

Attackers mainly take the advantage of the weakness of the authentication
mechanism to get the user session id, details, and user credentials.

In this vulnerability, there are so many cases due to not implementing best
practices while developing and deploying API.

Broken Authentication attacks aim to take over one or more accounts giving
the attacker the same privileges as the attacked user. Authentication is
broken when attackers are able to compromise passwords, keys or session
tokens, user account information, and other details to assume user
identities.

Use Cases

1. Username and password are easy to guess using fuzzing or brute force.

2. Password Does not match Password complexity policy or best practices.

3. Enumeration of username/password at the authentication failure
response invalid username or an invalid password.

4. Login credentials are not protected when stored and lacking hashing and
salt.

5. Transmission of username and password over an unencrypted channel
such as HTTP

6. Session ID exposes in URL.

7. User session or authentication tokens are not timeouts after user logout.

Broken User Authentication

Developers must ensure authentication mechanisms are correctly set and secured.
Several automated tools may help you test the most common authentication
patterns. For example, for basic authentication, security tools like Acunetix or
Burp Suite can verify the token is encrypted and the hash is correct. Such tools will
provide you with a basic report, which you then must analyze carefully.

3. Excessive Data Exposure

This vulnerability is related to exposing the data from API and which will
render or display over the UI.

For example, we have an interface where we want to display three fields
from user objects like name, address, and profile photo. But at the same
time from API we are getting more data in user objects which is irrelevant in
the case of the current user interface.

To prevent this we have returned the relevant fields in API response and not
to shared sensitive data over API.

Use cases

1. The API returns full data objects as they are stored in the backend
database.

2. The client application filters the responses and only shows the data that
the users really need to see.

3. Attackers call the API directly and get also the sensitive data that the UI
would filter out.

Excessive Data Exposure

We have to test for Excessive Data Exposure manually. We can validate the API
response fields via functional testing.

4. Lack of Resources & Rate Limiting

Improper rate limiting is a type of vulnerability that occurs when an API has
no limit on the number of requests it sends to another API or a server.

The API is not protected against an excessive amount of calls or payload
sizes. Attackers can use this for Denial of Service (DoS) and authentication
flaws like brute force attacks.

Use Cases

1. The attacker may overload the API by sending unnecessary more request

2. Not having proper validation over the requested size of record for the per
request

Lack of Resources & Rate Limiting

To find rate limiting vulnerabilities, you can use different fuzzing tools like
JBroFuzz or Fuzzapi. Or, you can use the same tools with which you analyze
traffic.

Using 429 (Too Many Requests) status code we can implement rate limiting over
overloaded unnecessary API requests.

We can add proper validation over requested record size from API to return the
limited record in response

5. Broken Function Level Authorization

Complex access control policies with different hierarchies, groups, and
roles, and an unclear separation between administrative and regular

Search Sign up Sign inWrite
To make Medium work, we log user data. By using Medium, you agree to our Privacy Policy,

including cookie policy.

https://blog.santoshshinde.com/?source=post_page-----a677cda0be9d--------------------------------
https://javascript.plainenglish.io/?source=post_page-----a677cda0be9d--------------------------------
https://blog.santoshshinde.com/?source=post_page-----a677cda0be9d--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2Ff5cfa346da5&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&user=Santosh+Shinde&userId=f5cfa346da5&source=post_page-f5cfa346da5----a677cda0be9d---------------------post_header-----------
https://javascript.plainenglish.io/?source=post_page-----a677cda0be9d--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fa677cda0be9d&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&source=-----a677cda0be9d---------------------bookmark_footer-----------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2Fplans%3Fdimension%3Dpost_audio_button%26postId%3Da677cda0be9d&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&source=-----a677cda0be9d---------------------post_audio_button-----------
https://roy.gbiv.com/
https://www.postman.com/
https://www.telerik.com/download/fiddler
https://smartbear.com/product/ready-api/overview/
https://www.acunetix.com/
https://portswigger.net/burp
https://nordicapis.com/everything-you-need-to-know-about-api-rate-limiting/
https://sourceforge.net/projects/jbrofuzz/
https://github.com/Fuzzapi/fuzzapi
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fjavascript-in-plain-english%2Fa677cda0be9d&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&user=Santosh+Shinde&userId=f5cfa346da5&source=-----a677cda0be9d---------------------clap_footer-----------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fmedium.com%2Fnew-story&source=---two_column_layout_nav-----------------------new_post_topnav-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&source=post_page---two_column_layout_nav-----------------------global_nav-----------
https://medium.com/m/signin?operation=login&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&source=post_page---two_column_layout_nav-----------------------global_nav-----------
https://policy.medium.com/medium-privacy-policy-f03bf92035c9

roles, and an unclear separation between administrative and regular
functions, tend to lead to authorization flaws.

This vulnerability is concerned with vertical levels of authorization — The
user attempting to gain more access rights than allowed. For example, a
regular user trying to become an admin.

Broken Function Level Authorization

To find this vulnerability, we have to understand how various roles and objects in
the application are connected and the access matrix implemented in the
application

6. Mass Assignment

The API takes data that the client provides and stores it without proper
filtering for whitelisted properties.

Implement the validation middleware to get the parameters from client API
requests and extract the particular fields which are needed to serve that
request.

Mass Assignment

Use the readOnly property set to true in object schemas for all properties that can
be retrieved through APIs but should never be modified.

Precisely define the schemas, types, and patterns you will accept in requests at
design time and enforce them at runtime.

7. Security Misconfiguration

This vulnerability is related to the misconfiguration of your web servers or
API.

Poor configuration of the API servers allows attackers to exploit them.

All unnecessary HTTP methods must be disabled on the server. Do not show
any unnecessary user errors at all.

Do not pass technical details of the error to the client. If your application
uses Cross-Origin Resource Sharing (CORS), that is, if it allows another
application from a different domain to access your application’s cookies,
then these headers must be appropriately configured to avoid additional
vulnerabilities.

Any access to internal files must also be disabled. There are special security
headers, like Content-Security-Policy, that you can also implement in your
applications to increase the security level.

Security Misconfiguration

If our application uses Cross-Origin Resource Sharing (CORS), that is, if it allows
another application from a different domain to access our application’s cookies,
then these headers must be appropriately configured to avoid additional
vulnerabilities. Any access to internal files must also be disabled. There are special
security headers, like Content-Security-Policy, that we can also implement in your
applications to increase the security level.

8. Injection

Attackers construct API calls that include SQL, NoSQL, LDAP, OS, or other
commands that the API or the backend behind it blindly executes.

We can use the object-relational mapping model to avoid SQL injection.

This does not mean that we need to forget about injections at all.

Such problems are still possible throughout a huge number of old sites and
systems. Besides XSS and SQL, we should look for XML injections, JSON
injections, and so on.

Injection

We can test for injections using different tools. For example, ReadyAPI provides a
paid tool for automatic scanning. Others, like Burp Suite, are partially free. Or, if
you use Postman on a project, you could perform basic injection tests using
Postman and data-driven testing.

9. Improper Assets Management

This vulnerability is related to the mismanagement of your assets.

This flaw is growing as engineers adopt DevOps, continuous testing, and
CI/CD pipelines.

From a security standpoint, it is essential to configure these CI/CD pipelines
correctly.

Attackers find non-production versions of the API (for example, staging,
testing, beta, or earlier versions) that are not as well protected as the
production API, and use those to launch their attacks.

Improper Assets Management

When using virtual machines, containers may be created by the CI/CD pipeline,
and microservices may be placed in a separate container. Throughout this process,
make sure we don’t have old containers hanging around that everyone has
forgotten about — these could easily become additional access points.

10. Insufficient Logging & Monitoring

This vulnerability has to do with insufficient logging and monitoring
procedures.

The main idea here is that whatever happens to our application, we must be
sure that we can track it. We should always have logs that show precisely
what the attacker was trying to do.

Also, have systems in place to identify suspicious traffic, and so on.

Insufficient Logging & Monitoring

OWASP provides detailed checklists to reference to ensure your application is
protected.

Case Studies

Hackers can access the Nissan Leaf via insecure APIs

Two security researchers have demonstrated security vulnerabilities in the Nissan Leaf
electric car by using mobile…

www.csoonline.com

Google+ Exposed Data of 52.5 Million Users and Will Shut Down
in April

In October, Google dramatically announced that it would shut down
Google+ in August 2019, because the company had…

www.wired.com

GitLab security update - API flaw could have exposed private
events * DEVCLASS

GitLab released a slew of security updates yesterday, hard on the
heels of the announcement of a vulnerability that…

devclass.com

Steam bug could have given you access to all the CD keys of any
game | ZDNet

A Ukrainian vulnerability researcher has found a bug that would
have allowed him to download all the activation keys…

www.zdnet.com

References

Architectural Styles and the Design of Network-based Software Architectures

The UNIVERSITY OF CALIFORNIA, IRVINE DISSERTATION submitted in partial satisfaction
of the requirements for the degree of…

www.ics.uci.edu

OWASP API Security - Top 10 | OWASP

A foundational element of innovation in today's app-driven world is
the API. From banks, retail, and transportation to…

owasp.org

Testing OWASP's Top 10 API Security Vulnerabilities | Nordic APIs
|

Compared to web applications, API security testing has its own
specific needs. Below, we cover the top vulnerabilities…

nordicapis.com

OWASP API Security Top 10

The Open Web Application Security Project (OWASP) is a non-profit, collaborative online
community behind the OWASP Top…

apisecurity.io

Application Security Verification Standard

More content at plainenglish.io

85 1

Written by Santosh Shinde
390 Followers · Writer for JavaScript in Plain English

Lead Software Engineer @Syngenta | #javascript #nodejs #typescript #reactjs
#angular | #followme @ https://twitter.com/shindesan2012

Follow

More from Santosh Shinde and JavaScript in Plain English

See all from Santosh Shinde See all from JavaScript in Plain English

Recommended from Medium

Lists

General Coding Knowledge
20 stories · 1337 saves

Coding & Development
11 stories · 677 saves

Stories to Help You Grow as a
Software Developer
19 stories · 1167 saves

ChatGPT
21 stories · 694 saves

See more recommendations

Help Status About Careers Press Blog Privacy Terms Text to speech Teams

API Security JavaScript Programming Web Development

in

Multi-factor authentication using
Node JS and React JS
2FA TOTP implementation using Node.js,
TypeScript, and React.js.

Apr 26

in

Microsoft is ditching React
Here’s why Microsoft considers React a
mistake for Edge.

Jun 6

in

15 Time-Saving Websites Every
Developer Needs
Ever thought that there aren’t enough hours
in the day for all your never-ending…
development tasks? You are not alone.

Apr 29

in

How to Use Sequelize with
Typescript, Node.js, and…
PostgreSQLGetting started guide for Configure Sequelize
with TypeScript by defining models,…
associations, and database connections.

Mar 16

in

The resume that got a software
engineer a $300,000 job at Google.
1-page. Well-formatted.

Jun 1

in

JWT vs PASETO: New Era of Token-
Based Authentication
This article delves into a comprehensive
comparison of Paseto and JWT, dissecting…
their core functionalities, security features,
and…Jun 6

A basic question in security
Interview: How do you store…
passwords in the database?Explained in 3 mins.

May 12

in

What’s the Difference Between
localhost and 127.0.0.1?
My article is open to everyone; non-member
readers can click this link to read the full text.

Feb 1

Node.js is faster than Go
…when you write bad code. A lesson in
connection pooling, and not simply copying…
and pasting code you find on the internet.

Apr 1

in

Stop Using UUIDs in Your Database
How UUIDs can Destroy SQL Database
Performance

May 16

Santosh Shinde JavaScript in Plain English

68

Afan Khan JavaScript in Plain English

1.8K 47

Rehan Pinjari JavaScript in Plain English

1.6K 20

Santosh Shinde JavaScript in Plain English

39 1

Alexander Nguyen Level Up Coding

10K 132

Ege Aytin Permify Tech Blog

935 12

LORY

3.8K 39

Oliver Foster Stackademic

3.4K 22

CJ Hewett

504 9

Daniel Craciun JavaScript in Plain English

2K 84

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://nordicapis.com/top-25-api-testing-tools/
https://portswigger.net/
https://owasp.org/www-pdf-archive/OWASPApplicationSecurityVerificationStandard3.0.pdf
https://www.csoonline.com/article/3037408/hackers-can-access-the-nissan-leaf-via-insecure-apis.html?source=post_page-----a677cda0be9d--------------------------------
https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/?source=post_page-----a677cda0be9d--------------------------------
https://devclass.com/2018/10/02/gitlab-api-flaw-security-updates/?source=post_page-----a677cda0be9d--------------------------------
https://www.zdnet.com/article/steam-bug-could-have-given-you-access-to-all-the-cd-keys-of-any-game/?source=post_page-----a677cda0be9d--------------------------------
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm?source=post_page-----a677cda0be9d--------------------------------
https://owasp.org/www-project-api-security/?source=post_page-----a677cda0be9d--------------------------------
https://nordicapis.com/testing-owasps-top-10-api-security-vulnerabilities/?source=post_page-----a677cda0be9d--------------------------------
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10?source=post_page-----a677cda0be9d--------------------------------
https://owasp.org/www-pdf-archive/OWASPApplicationSecurityVerificationStandard3.0.pdf
http://plainenglish.io/
https://medium.com/tag/api?source=post_page-----a677cda0be9d---------------api-----------------
https://medium.com/tag/security?source=post_page-----a677cda0be9d---------------security-----------------
https://medium.com/tag/javascript?source=post_page-----a677cda0be9d---------------javascript-----------------
https://medium.com/tag/programming?source=post_page-----a677cda0be9d---------------programming-----------------
https://medium.com/tag/web-development?source=post_page-----a677cda0be9d---------------web_development-----------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fa677cda0be9d&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&source=--------------------------bookmark_footer-----------
https://blog.santoshshinde.com/?source=post_page-----a677cda0be9d--------------------------------
https://javascript.plainenglish.io/?source=post_page-----a677cda0be9d--------------------------------
https://blog.santoshshinde.com/?source=post_page-----a677cda0be9d--------------------------------
https://blog.santoshshinde.com/followers?source=post_page-----a677cda0be9d--------------------------------
https://javascript.plainenglish.io/?source=post_page-----a677cda0be9d--------------------------------
https://twitter.com/shindesan2012
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2Ff5cfa346da5&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&user=Santosh+Shinde&userId=f5cfa346da5&source=post_page-f5cfa346da5----a677cda0be9d---------------------follow_profile-----------
https://medium.com/m/signin?actionUrl=%2F_%2Fapi%2Fsubscriptions%2Fnewsletters%2F9c65979af81e&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&newsletterV3=f5cfa346da5&newsletterV3Id=9c65979af81e&user=Santosh+Shinde&userId=f5cfa346da5&source=-----a677cda0be9d---------------------subscribe_user-----------
https://blog.santoshshinde.com/?source=post_page-----a677cda0be9d--------------------------------
https://javascript.plainenglish.io/?source=post_page-----a677cda0be9d--------------------------------
https://eddiebarth.medium.com/list/general-coding-knowledge-f2d429d4f0cd?source=read_next_recirc-----a677cda0be9d--------------------------------
https://medium.com/@jscribes/list/coding-development-e360d380bb82?source=read_next_recirc-----a677cda0be9d--------------------------------
https://medium.com/@MediumStaff/list/stories-to-help-you-grow-as-a-software-developer-b1d913188c20?source=read_next_recirc-----a677cda0be9d--------------------------------
https://medium.com/@m.wasalski/list/chatgpt-3742c7a4727d?source=read_next_recirc-----a677cda0be9d--------------------------------
https://medium.com/?source=post_page-----a677cda0be9d--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----a677cda0be9d--------------------------------
https://medium.statuspage.io/?source=post_page-----a677cda0be9d--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----a677cda0be9d--------------------------------
https://medium.com/jobs-at-medium/work-at-medium-959d1a85284e?source=post_page-----a677cda0be9d--------------------------------
mailto:pressinquiries@medium.com?source=post_page-----a677cda0be9d--------------------------------
https://blog.medium.com/?source=post_page-----a677cda0be9d--------------------------------
https://policy.medium.com/medium-privacy-policy-f03bf92035c9?source=post_page-----a677cda0be9d--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----a677cda0be9d--------------------------------
https://speechify.com/medium?source=post_page-----a677cda0be9d--------------------------------
https://medium.com/business?source=post_page-----a677cda0be9d--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fjavascript-in-plain-english%2Fa677cda0be9d&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Frest-api-overview-api-security-vulnerabilities-a677cda0be9d&user=Santosh+Shinde&userId=f5cfa346da5&source=-----a677cda0be9d---------------------clap_footer-----------
https://javascript.plainenglish.io/multi-factor-authentication-using-node-js-and-react-js-08967b755a5c?source=author_recirc-----a677cda0be9d----0---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://blog.santoshshinde.com/?source=author_recirc-----a677cda0be9d----0---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://javascript.plainenglish.io/microsoft-is-ditching-react-f8b952b92b9b?source=author_recirc-----a677cda0be9d----1---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://whyafan.medium.com/?source=author_recirc-----a677cda0be9d----1---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://javascript.plainenglish.io/15-time-saving-websites-every-developer-needs-cf76ea19e430?source=author_recirc-----a677cda0be9d----2---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://pinjarirehan.medium.com/?source=author_recirc-----a677cda0be9d----2---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://javascript.plainenglish.io/how-to-use-sequelize-with-typescript-node-js-and-postgresql-c6ff58a3af76?source=author_recirc-----a677cda0be9d----3---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://blog.santoshshinde.com/?source=author_recirc-----a677cda0be9d----3---------------------421df439_837e_4c03_a964_3689eac7dba2-------
https://levelup.gitconnected.com/the-resume-that-got-a-software-engineer-a-300-000-job-at-google-8c5a1ecff40f?source=read_next_recirc-----a677cda0be9d----0---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://alexcancode.medium.com/?source=read_next_recirc-----a677cda0be9d----0---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/permify-tech-blog/jwt-vs-paseto-new-era-of-token-based-authentication-68b5ca6c3a32?source=read_next_recirc-----a677cda0be9d----1---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/@ege.aytin?source=read_next_recirc-----a677cda0be9d----1---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://iorilan.medium.com/a-basic-question-in-security-interview-how-do-you-store-passwords-in-the-database-676c125cff64?source=read_next_recirc-----a677cda0be9d----0---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://iorilan.medium.com/?source=read_next_recirc-----a677cda0be9d----0---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://blog.stackademic.com/whats-the-difference-between-localhost-and-127-0-0-1-4102ba05d494?source=read_next_recirc-----a677cda0be9d----1---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/@haiou-a?source=read_next_recirc-----a677cda0be9d----1---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://cj-hewett.medium.com/node-js-is-faster-than-go-5c2c72017829?source=read_next_recirc-----a677cda0be9d----2---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://cj-hewett.medium.com/?source=read_next_recirc-----a677cda0be9d----2---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://javascript.plainenglish.io/stop-using-uuids-in-your-database-aae9d5d47549?source=read_next_recirc-----a677cda0be9d----3---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/@danielcracbusiness?source=read_next_recirc-----a677cda0be9d----3---------------------315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F08967b755a5c&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Fmulti-factor-authentication-using-node-js-and-react-js-08967b755a5c&source=-----a677cda0be9d----0-----------------bookmark_preview----421df439_837e_4c03_a964_3689eac7dba2-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Ff8b952b92b9b&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Fmicrosoft-is-ditching-react-f8b952b92b9b&source=-----a677cda0be9d----1-----------------bookmark_preview----421df439_837e_4c03_a964_3689eac7dba2-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fcf76ea19e430&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2F15-time-saving-websites-every-developer-needs-cf76ea19e430&source=-----a677cda0be9d----2-----------------bookmark_preview----421df439_837e_4c03_a964_3689eac7dba2-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fc6ff58a3af76&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Fhow-to-use-sequelize-with-typescript-node-js-and-postgresql-c6ff58a3af76&source=-----a677cda0be9d----3-----------------bookmark_preview----421df439_837e_4c03_a964_3689eac7dba2-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F8c5a1ecff40f&operation=register&redirect=https%3A%2F%2Flevelup.gitconnected.com%2Fthe-resume-that-got-a-software-engineer-a-300-000-job-at-google-8c5a1ecff40f&source=-----a677cda0be9d----0-----------------bookmark_preview----315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F68b5ca6c3a32&operation=register&redirect=https%3A%2F%2Fmedium.com%2Fpermify-tech-blog%2Fjwt-vs-paseto-new-era-of-token-based-authentication-68b5ca6c3a32&source=-----a677cda0be9d----1-----------------bookmark_preview----315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F676c125cff64&operation=register&redirect=https%3A%2F%2Fiorilan.medium.com%2Fa-basic-question-in-security-interview-how-do-you-store-passwords-in-the-database-676c125cff64&source=-----a677cda0be9d----0-----------------bookmark_preview----315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F4102ba05d494&operation=register&redirect=https%3A%2F%2Fblog.stackademic.com%2Fwhats-the-difference-between-localhost-and-127-0-0-1-4102ba05d494&source=-----a677cda0be9d----1-----------------bookmark_preview----315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F5c2c72017829&operation=register&redirect=https%3A%2F%2Fcj-hewett.medium.com%2Fnode-js-is-faster-than-go-5c2c72017829&source=-----a677cda0be9d----2-----------------bookmark_preview----315d5367_a217_48e1_ab87_b9890c918a08-------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Faae9d5d47549&operation=register&redirect=https%3A%2F%2Fjavascript.plainenglish.io%2Fstop-using-uuids-in-your-database-aae9d5d47549&source=-----a677cda0be9d----3-----------------bookmark_preview----315d5367_a217_48e1_ab87_b9890c918a08-------

